本文整理匯總了Python中absl.logging.fatal方法的典型用法代碼示例。如果您正苦於以下問題:Python logging.fatal方法的具體用法?Python logging.fatal怎麽用?Python logging.fatal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類absl.logging
的用法示例。
在下文中一共展示了logging.fatal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def main(unused_argv):
generate.init_modules(FLAGS.train_split)
output_dir = os.path.expanduser(FLAGS.output_dir)
if os.path.exists(output_dir):
logging.fatal('output dir %s already exists', output_dir)
logging.info('Writing to %s', output_dir)
os.makedirs(output_dir)
for regime, flat_modules in six.iteritems(generate.filtered_modules):
regime_dir = os.path.join(output_dir, regime)
os.mkdir(regime_dir)
per_module = generate.counts[regime]
for module_name, module in six.iteritems(flat_modules):
path = os.path.join(regime_dir, module_name + '.txt')
with open(path, 'w') as text_file:
for _ in range(per_module):
problem, _ = generate.sample_from_module(module)
text_file.write(str(problem.question) + '\n')
text_file.write(str(problem.answer) + '\n')
logging.info('Written %s', path)
示例2: build_optimizer
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def build_optimizer(learning_rate,
optimizer_name='rmsprop',
decay=0.9,
epsilon=0.001,
momentum=0.9):
"""Build optimizer."""
if optimizer_name == 'sgd':
logging.info('Using SGD optimizer')
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
elif optimizer_name == 'momentum':
logging.info('Using Momentum optimizer')
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate, momentum=momentum)
elif optimizer_name == 'rmsprop':
logging.info('Using RMSProp optimizer')
optimizer = tf.train.RMSPropOptimizer(learning_rate, decay, momentum,
epsilon)
else:
logging.fatal('Unknown optimizer: %s', optimizer_name)
return optimizer
示例3: _find_files
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def _find_files(dl_paths, publisher, url_dict):
"""Find files corresponding to urls."""
if publisher == 'cnn':
top_dir = os.path.join(dl_paths['cnn_stories'], 'cnn', 'stories')
elif publisher == 'dm':
top_dir = os.path.join(dl_paths['dm_stories'], 'dailymail', 'stories')
else:
logging.fatal('Unsupported publisher: %s', publisher)
files = tf.io.gfile.listdir(top_dir)
ret_files = []
for p in files:
basename = os.path.basename(p)
if basename[0:basename.find('.story')] in url_dict:
ret_files.append(os.path.join(top_dir, p))
return ret_files
示例4: value
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def value(self, v):
if v in _CPP_LEVEL_TO_NAMES:
# --stderrthreshold also accepts numberic strings whose values are
# Abseil C++ log levels.
cpp_value = int(v)
v = _CPP_LEVEL_TO_NAMES[v] # Normalize to strings.
elif v.lower() in _CPP_NAME_TO_LEVELS:
v = v.lower()
if v == 'warn':
v = 'warning' # Use 'warning' as the canonical name.
cpp_value = int(_CPP_NAME_TO_LEVELS[v])
else:
raise ValueError(
'--stderrthreshold must be one of (case-insensitive) '
"'debug', 'info', 'warning', 'error', 'fatal', "
"or '0', '1', '2', '3', not '%s'" % v)
self._value = v
示例5: set_verbosity
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def set_verbosity(v):
"""Sets the logging verbosity.
Causes all messages of level <= v to be logged,
and all messages of level > v to be silently discarded.
Args:
v: int|str, the verbosity level as an integer or string. Legal string values
are those that can be coerced to an integer as well as case-insensitive
'debug', 'info', 'warning', 'error', and 'fatal'.
"""
try:
new_level = int(v)
except ValueError:
new_level = converter.ABSL_NAMES[v.upper()]
FLAGS.verbosity = new_level
示例6: set_stderrthreshold
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def set_stderrthreshold(s):
"""Sets the stderr threshold to the value passed in.
Args:
s: str|int, valid strings values are case-insensitive 'debug',
'info', 'warning', 'error', and 'fatal'; valid integer values are
logging.DEBUG|INFO|WARNING|ERROR|FATAL.
Raises:
ValueError: Raised when s is an invalid value.
"""
if s in converter.ABSL_LEVELS:
FLAGS.stderrthreshold = converter.ABSL_LEVELS[s]
elif isinstance(s, str) and s.upper() in converter.ABSL_NAMES:
FLAGS.stderrthreshold = s
else:
raise ValueError(
'set_stderrthreshold only accepts integer absl logging level '
'from -3 to 1, or case-insensitive string values '
"'debug', 'info', 'warning', 'error', and 'fatal'. "
'But found "{}" ({}).'.format(s, type(s)))
示例7: find_log_dir
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def find_log_dir(log_dir=None):
"""Returns the most suitable directory to put log files into.
Args:
log_dir: str|None, if specified, the logfile(s) will be created in that
directory. Otherwise if the --log_dir command-line flag is provided,
the logfile will be created in that directory. Otherwise the logfile
will be created in a standard location.
"""
# Get a list of possible log dirs (will try to use them in order).
if log_dir:
# log_dir was explicitly specified as an arg, so use it and it alone.
dirs = [log_dir]
elif FLAGS['log_dir'].value:
# log_dir flag was provided, so use it and it alone (this mimics the
# behavior of the same flag in logging.cc).
dirs = [FLAGS['log_dir'].value]
else:
dirs = ['/tmp/', './']
# Find the first usable log dir.
for d in dirs:
if os.path.isdir(d) and os.access(d, os.W_OK):
return d
_absl_logger.fatal("Can't find a writable directory for logs, tried %s", dirs)
示例8: score
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def score(self, data: List[List[str]], labels: List[List[str]]) -> float:
"""Evaluate the performance of ner model with given data and labels, return the f1 score.
Args:
data: List of List of str. List of tokenized (in char level) texts ,
like ``[['我', '在', '上', '海', '上', '學'], ...]``.
labels: List of List of str. The corresponding labels , usually in BIO or BIOES
format, like ``[['O', 'O', 'B-LOC', 'I-LOC', 'O', 'O'], ...]``.
Returns:
Float. The F1 score.
"""
if self.trainer:
return self.trainer.evaluate(data, labels)
else:
logging.fatal('Trainer is None! Call fit() or load() to get trainer.')
示例9: predict_batch
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def predict_batch(self, texts: Union[List[str], List[List[str]]]) -> List[List[str]]:
"""Return the tag sequences of given batch of texts predicted by the ner model
Args:
texts: List of str or List of List of str. Can be a batch of un-tokenized texts,
like ``['我在上海上學', ...]`` or a batch of tokenized (in char level) text sequences,
like ``[['我', '在', '上', '海', '上', '學'], ...]``.
Returns:
List of List of str. The tag sequences, like ``[['O', 'O', 'B-LOC', 'I-LOC', 'O',
'O']]``
"""
if self.predictor:
return self.predictor.tag_batch(texts)
else:
logging.fatal('Predictor is None! Call fit() or load() to get predictor.')
示例10: create_bottleneck_file
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
image_dir, category, sess, jpeg_data_tensor,
decoded_image_tensor, resized_input_tensor,
bottleneck_tensor):
"""Create a single bottleneck file."""
logging.debug('Creating bottleneck at %s', bottleneck_path)
image_path = get_image_path(image_lists, label_name, index,
image_dir, category)
if not tf.gfile.Exists(image_path):
logging.fatal('File does not exist %s', image_path)
image_data = tf.gfile.GFile(image_path, 'rb').read()
try:
bottleneck_values = run_bottleneck_on_image(
sess, image_data, jpeg_data_tensor, decoded_image_tensor,
resized_input_tensor, bottleneck_tensor)
except Exception as e:
raise RuntimeError('Error during processing file %s (%s)' % (image_path,
str(e)))
bottleneck_string = ','.join(str(x) for x in bottleneck_values)
with tf.gfile.GFile(bottleneck_path, 'w') as bottleneck_file:
bottleneck_file.write(bottleneck_string)
示例11: _reshape_by_device_single
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def _reshape_by_device_single(x, n_devices):
"""Reshape x into a shape [n_devices, ...]."""
x_shape = list(x.shape)
batch_size = x_shape[0]
batch_size_per_device = batch_size // n_devices
# We require that n_devices divides batch_size evenly.
if batch_size_per_device * n_devices != batch_size:
logging.fatal(
"We require that n_devices[%d] divides batch_size[%d] evenly.",
n_devices, batch_size)
# New shape.
new_shape_prefix = [n_devices, batch_size_per_device]
return np.reshape(x, new_shape_prefix + x_shape[1:])
示例12: __init__
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def __init__(
self,
kernel_shape,
multiplier: multiplier_impl.IMultiplier,
):
super().__init__()
if len(kernel_shape) not in (
2,
4,
):
logging.fatal(
"unsupported kernel shape, "
"it is neither a dense kernel of length 2,"
" nor a convolution kernel of length 4")
kernel_shape_excluding_output_dim = kernel_shape[:-1]
kernel_add_ops = np.prod(kernel_shape_excluding_output_dim)
# bias are associate with filters; each filter adds 1 bias
bias_add = 1
add_ops = kernel_add_ops + bias_add
self.log_add_ops = int(np.ceil(np.log2(add_ops)))
self.multiplier = multiplier
self.output = quantizer_impl.QuantizedBits()
self.output.bits = self.log_add_ops + self.multiplier.output.bits
self.output.int_bits = self.log_add_ops + self.multiplier.output.int_bits
self.output.is_signed = self.multiplier.output.is_signed
self.output.op_type = "accumulator"
assert not self.multiplier.output.is_floating_point
self.output.is_floating_point = False
示例13: _subset_filenames
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def _subset_filenames(dl_paths, split):
"""Get filenames for a particular split."""
assert isinstance(dl_paths, dict), dl_paths
# Get filenames for a split.
if split == tfds.Split.TRAIN:
urls = _get_url_hashes(dl_paths['train_urls'])
elif split == tfds.Split.VALIDATION:
urls = _get_url_hashes(dl_paths['val_urls'])
elif split == tfds.Split.TEST:
urls = _get_url_hashes(dl_paths['test_urls'])
else:
logging.fatal('Unsupported split: %s', split)
cnn = _find_files(dl_paths, 'cnn', urls)
dm = _find_files(dl_paths, 'dm', urls)
return cnn + dm
示例14: _decode_image
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def _decode_image(fobj, session, filename):
"""Reads and decodes an image from a file object as a Numpy array.
The SUN dataset contains images in several formats (despite the fact that
all of them have .jpg extension). Some of them are:
- BMP (RGB)
- PNG (grayscale, RGBA, RGB interlaced)
- JPEG (RGB)
- GIF (1-frame RGB)
Since TFDS assumes that all images have the same number of channels, we
convert all of them to RGB.
Args:
fobj: File object to read from.
session: TF session used to decode the images.
filename: Filename of the original image in the archive.
Returns:
Numpy array with shape (height, width, channels).
"""
buf = fobj.read()
image = tfds.core.lazy_imports.cv2.imdecode(
np.fromstring(buf, dtype=np.uint8), flags=3) # Note: Converts to RGB.
if image is None:
logging.warning(
"Image %s could not be decoded by OpenCV, falling back to TF", filename)
try:
image = tf.image.decode_image(buf, channels=3)
image = session.run(image)
except tf.errors.InvalidArgumentError:
logging.fatal("Image %s could not be decoded by Tensorflow", filename)
# The GIF images contain a single frame.
if len(image.shape) == 4: # rank=4 -> rank=3
image = image.reshape(image.shape[1:])
return image
示例15: infer
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import fatal [as 別名]
def infer(self, yield_single_examples=False):
''' inference '''
logging.fatal("Not Implemented")