本文整理匯總了Python中absl.logging.exception方法的典型用法代碼示例。如果您正苦於以下問題:Python logging.exception方法的具體用法?Python logging.exception怎麽用?Python logging.exception使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類absl.logging
的用法示例。
在下文中一共展示了logging.exception方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_version_numbers
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def test_version_numbers(self):
run_config = run_configs.get()
failures = []
for game_version, version in sorted(run_config.get_versions().items()):
try:
self.assertEqual(game_version, version.game_version)
log_center("starting version check: %s", game_version)
run_config = run_configs.get(version=game_version)
with run_config.start(want_rgb=False) as controller:
ping = controller.ping()
logging.info("expected: %s", version)
logging.info("actual: %s", ", ".join(str(ping).strip().split("\n")))
self.assertEqual(version.build_version, ping.base_build)
if version.game_version != "latest":
self.assertEqual(major_version(ping.game_version),
major_version(version.game_version))
self.assertEqual(version.data_version.lower(),
ping.data_version.lower())
log_center("success: %s", game_version)
except: # pylint: disable=bare-except
log_center("failure: %s", game_version)
logging.exception("Failed")
failures.append(game_version)
self.assertEmpty(failures)
示例2: test_captured_pre_init_warnings
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def test_captured_pre_init_warnings(self):
with open(before_set_verbosity_filename) as stderr_capture_file:
captured_stderr = stderr_capture_file.read()
self.assertNotIn('Debug message at parse time.', captured_stderr)
self.assertNotIn('Info message at parse time.', captured_stderr)
traceback_re = re.compile(
r'\nTraceback \(most recent call last\):.*?Error: Exception reason.',
re.MULTILINE | re.DOTALL)
if not traceback_re.search(captured_stderr):
self.fail(
'Cannot find traceback message from logging.exception '
'in stderr:\n{}'.format(captured_stderr))
# Remove the traceback so the rest of the stderr is deterministic.
captured_stderr = traceback_re.sub('', captured_stderr)
captured_stderr_lines = captured_stderr.splitlines()
self.assertLen(captured_stderr_lines, 3)
self.assertIn('Error message at parse time.', captured_stderr_lines[0])
self.assertIn('Warning message at parse time.', captured_stderr_lines[1])
self.assertIn('Exception message at parse time.', captured_stderr_lines[2])
示例3: post
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def post(self):
"""Process an async Action task with the correct Action class."""
payload = pickle.loads(self.request.body)
async_actions = payload.pop('async_actions')
action_name = async_actions.pop(0)
action_instance = self.actions['async'].get(action_name)
if action_instance:
try:
action_instance.run(**payload)
# pylint: disable=broad-except, because this logic, in which tasks are
# responsible for spawning subsequent tasks, creates a chain that could be
# interrupted by any conceivable exception in an action's run method. This
# handling ensures any further tasks will run.
except Exception as error:
logging.exception(
'Failed to run async Action %r due to error: %r',
action_name, str(error))
# pylint: enable=broad-except
else:
logging.error('No async Action named %s found.', action_name)
if async_actions:
payload['async_actions'] = async_actions
taskqueue.add(
queue_name='process-action',
payload=pickle.dumps(payload),
target='default')
示例4: test_versions_create_game
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def test_versions_create_game(self):
run_config = run_configs.get()
failures = []
for game_version in sorted(run_config.get_versions().keys()):
try:
log_center("starting create game: %s", game_version)
run_config = run_configs.get(version=game_version)
with run_config.start(want_rgb=False) as controller:
interface = sc_pb.InterfaceOptions()
interface.raw = True
interface.score = True
interface.feature_layer.width = 24
interface.feature_layer.resolution.x = 84
interface.feature_layer.resolution.y = 84
interface.feature_layer.minimap_resolution.x = 64
interface.feature_layer.minimap_resolution.y = 64
map_inst = maps.get("Simple64")
create = sc_pb.RequestCreateGame(local_map=sc_pb.LocalMap(
map_path=map_inst.path, map_data=map_inst.data(run_config)))
create.player_setup.add(type=sc_pb.Participant)
create.player_setup.add(type=sc_pb.Computer, race=sc_common.Terran,
difficulty=sc_pb.VeryEasy)
join = sc_pb.RequestJoinGame(race=sc_common.Terran, options=interface)
controller.create_game(create)
controller.join_game(join)
for _ in range(5):
controller.step(16)
controller.observe()
log_center("success: %s", game_version)
except: # pylint: disable=bare-except
logging.exception("Failed")
log_center("failure: %s", game_version)
failures.append(game_version)
self.assertEmpty(failures)
示例5: _launch
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def _launch(self, run_config, args, **kwargs):
"""Launch the process and return the process object."""
del kwargs
try:
with sw("popen"):
return subprocess.Popen(args, cwd=run_config.cwd, env=run_config.env)
except OSError:
logging.exception("Failed to launch")
raise SC2LaunchError("Failed to launch: %s" % args)
示例6: _PrepareModelPath
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def _PrepareModelPath(
self, model_uri: Text,
serving_spec: infra_validator_pb2.ServingSpec) -> Text:
model_path = path_utils.serving_model_path(model_uri)
serving_binary = serving_spec.WhichOneof('serving_binary')
if serving_binary == _TENSORFLOW_SERVING:
# TensorFlow Serving requires model to be stored in its own directory
# structure flavor. If current model_path does not conform to the flavor,
# we need to make a copy to the temporary path.
try:
# Check whether current model_path conforms to the tensorflow serving
# model path flavor. (Parsed without exception)
tf_serving_flavor.parse_model_path(
model_path,
expected_model_name=serving_spec.model_name)
except ValueError:
# Copy the model to comply with the tensorflow serving model path
# flavor.
temp_model_path = tf_serving_flavor.make_model_path(
model_base_path=self._get_tmp_dir(),
model_name=serving_spec.model_name,
version=int(time.time()))
io_utils.copy_dir(src=model_path, dst=temp_model_path)
self._AddCleanup(io_utils.delete_dir, self._context.get_tmp_path())
return temp_model_path
return model_path
示例7: _ValidateWithRetry
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def _ValidateWithRetry(
self, model_path: Text,
serving_binary: serving_bins.ServingBinary,
serving_spec: infra_validator_pb2.ServingSpec,
validation_spec: infra_validator_pb2.ValidationSpec,
requests: List[iv_types.Request]):
for i in range(validation_spec.num_tries):
logging.info('Starting infra validation (attempt %d/%d).', i + 1,
validation_spec.num_tries)
try:
self._ValidateOnce(
model_path=model_path,
serving_binary=serving_binary,
serving_spec=serving_spec,
validation_spec=validation_spec,
requests=requests)
except error_types.GracefulShutdown:
# GracefulShutdown means infra validation aborted. No more retry and
# escalate the error.
raise
except Exception as e: # pylint: disable=broad-except
# Other exceptions indicates validation failure. Log the error and
# retry.
logging.exception('Infra validation (attempt %d/%d) failed.', i + 1,
validation_spec.num_tries)
if isinstance(e, error_types.DeadlineExceeded):
logging.info('Consider increasing the value of '
'ValidationSpec.max_loading_time_seconds.')
else:
# If validation has passed without any exception, succeeded.
return True
# Every trial has failed. Marking model as not blessed.
return False
示例8: _test_unicode
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def _test_unicode():
"""Tests unicode handling."""
test_names = []
def log(name, msg, *args):
"""Logs the message, and ensures the same name is not logged again."""
assert name not in test_names, ('test_unicode expects unique names to work,'
' found existing name {}').format(name)
test_names.append(name)
# Add line seprators so that tests can verify the output for each log
# message.
sys.stderr.write('-- begin {} --\n'.format(name))
logging.info(msg, *args)
sys.stderr.write('-- end {} --\n'.format(name))
log('unicode', u'G\u00eete: Ch\u00e2tonnaye')
log('unicode % unicode', u'G\u00eete: %s', u'Ch\u00e2tonnaye')
log('bytes % bytes', u'G\u00eete: %s'.encode('utf-8'),
u'Ch\u00e2tonnaye'.encode('utf-8'))
log('unicode % bytes', u'G\u00eete: %s', u'Ch\u00e2tonnaye'.encode('utf-8'))
log('bytes % unicode', u'G\u00eete: %s'.encode('utf-8'), u'Ch\u00e2tonnaye')
log('unicode % iso8859-15', u'G\u00eete: %s',
u'Ch\u00e2tonnaye'.encode('iso-8859-15'))
log('str % exception', 'exception: %s', Exception(u'Ch\u00e2tonnaye'))
示例9: test_exception_dict_format
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def test_exception_dict_format(self):
# Just verify that this doesn't raise a TypeError.
logging.exception('%(test)s', {'test': 'Hello world!'})
示例10: test_logging_do_not_recurse
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def test_logging_do_not_recurse(self):
logging.info('test info')
try:
raise ValueError('test exception')
except ValueError:
logging.exception('test message')
示例11: _lazy_init
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def _lazy_init(self):
"""Lazily initialize the underlying gRPC stream."""
if self._is_initialized:
return
logging.debug('Initializing bidi stream')
self._request_queue = queue.Queue()
self._response_event_dict = {}
self._stream_closed_event = threading.Event()
def request_iter():
"""Iterator that blocks on the request Queue."""
for seq in itertools.count():
logging.debug('Request thread: blocking for next request')
val = self._request_queue.get()
if val:
py_typecheck.check_type(val[0], executor_pb2.ExecuteRequest)
py_typecheck.check_type(val[1], threading.Event)
req = val[0]
req.sequence_number = seq
logging.debug(
'Request thread: processing request of type %s, seq_no %s',
val[0].WhichOneof('request'), seq)
self._response_event_dict[seq] = val[1]
yield val[0]
else:
logging.debug(
'Request thread: Final request received. Stream will close.')
# None means we are done processing
return
response_iter = self._stub.Execute(request_iter())
def response_thread_fn():
"""Consumes response iter and exposes the value on corresponding Event."""
try:
logging.debug('Response thread: blocking for next response')
for response in response_iter:
logging.debug(
'Response thread: processing response of type %s, seq_no %s',
response.WhichOneof('response'), response.sequence_number)
# Get the corresponding response Event
response_event = self._response_event_dict[response.sequence_number]
# Attach the response as an attribute on the Event
response_event.response = response
response_event.set()
# Set the event indicating the stream has been closed
self._stream_closed_event.set()
except grpc.RpcError as error:
logging.exception('Error calling remote executor: %s', error)
response_thread = threading.Thread(target=response_thread_fn)
response_thread.daemon = True
response_thread.start()
self._is_initialized = True
示例12: preprocess_for_train
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE,
augment_name=None,
randaug_num_layers=None, randaug_magnitude=None):
"""Preprocesses the given image for evaluation.
Args:
image_bytes: `Tensor` representing an image binary of arbitrary size.
use_bfloat16: `bool` for whether to use bfloat16.
image_size: image size.
augment_name: `string` that is the name of the augmentation method
to apply to the image. `autoaugment` if AutoAugment is to be used or
`randaugment` if RandAugment is to be used. If the value is `None` no
augmentation method will be applied applied. See autoaugment.py for more
details.
randaug_num_layers: 'int', if RandAug is used, what should the number of
layers be. See autoaugment.py for detailed description.
randaug_magnitude: 'int', if RandAug is used, what should the magnitude
be. See autoaugment.py for detailed description.
Returns:
A preprocessed image `Tensor`.
"""
image = _decode_and_random_crop(image_bytes, image_size)
image = _flip(image)
image = tf.reshape(image, [image_size, image_size, 3])
image = tf.image.convert_image_dtype(
image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32)
if augment_name:
try:
import autoaugment # pylint: disable=g-import-not-at-top
except ImportError as e:
logging.exception('Autoaugment is not supported in TF 2.x.')
raise e
logging.info('Apply AutoAugment policy %s', augment_name)
input_image_type = image.dtype
image = tf.clip_by_value(image, 0.0, 255.0)
image = tf.cast(image, dtype=tf.uint8)
if augment_name == 'autoaugment':
logging.info('Apply AutoAugment policy %s', augment_name)
image = autoaugment.distort_image_with_autoaugment(image, 'v0')
elif augment_name == 'randaugment':
image = autoaugment.distort_image_with_randaugment(
image, randaug_num_layers, randaug_magnitude)
else:
raise ValueError('Invalid value for augment_name: %s' % (augment_name))
image = tf.cast(image, dtype=input_image_type)
return image
示例13: _InstallGracefulShutdownHandler
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def _InstallGracefulShutdownHandler(self):
# pylint: disable=g-doc-return-or-yield
"""Install graceful shutdown behavior.
Caveat: InfraValidator currently only recognizes SIGTERM signal as a
graceful shutdown. Furthermore, SIGTERM can be handled only if the executor
is running on the MainThread (the thread that runs the python interpreter)
due to the limitation of Python API.
When the executor is running on Kubernetes, SIGTERM is a standard way to
signal the graceful shutdown. Python default behavior for receiving SIGTERM
is to terminate the process without raising any exception. By registering a
handler that raises on signal, we can effectively transform the signal to an
exception, and we can reuse our cleanup code inside "except" or "finally"
block during the grace period.
When the executor is run by the local Beam DirectRunner, the executor thread
is one of the worker threads (not a MainThread) therefore SIGTERM cannot
be recognized. If either of MainThread or worker thread receives SIGTERM,
executor will die immediately without grace period.
Even if the executor fails to shutdown gracefully, external resources that
are created by model server runner can be cleaned up if the platform
supports such mechanism (e.g. activeDeadlineSeconds in Kubernetes).
"""
def _handler(signum, frame):
del frame # Unused.
raise error_types.GracefulShutdown('Got signal {}.'.format(signum))
try:
old_handler = signal.signal(signal.SIGTERM, _handler)
except ValueError:
# If current thread is not a MainThread, it is not allowed to register
# the signal handler (ValueError raised).
logging.info('Unable to register signal handler for non-MainThread '
'(name=%s). SIGTERM will not be handled.',
threading.current_thread().name)
old_handler = None
try:
yield
finally:
self._Cleanup()
if old_handler:
signal.signal(signal.SIGTERM, old_handler)
示例14: _run_eval
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def _run_eval(module_spec, checkpoints, task_manager, run_config,
use_tpu, num_averaging_runs):
"""Evaluates the given checkpoints and add results to a result writer.
Args:
module_spec: `ModuleSpec` of the model.
checkpoints: Generator for for checkpoint paths.
task_manager: `TaskManager`. init_eval() will be called before adding
results.
run_config: `RunConfig` to use. Values for master and tpu_config are
currently ignored.
use_tpu: Whether to use TPU for evaluation.
num_averaging_runs: Determines how many times each metric is computed.
"""
# By default, we compute FID and Inception scores. Other tasks defined in
# the metrics folder (such as the one in metrics/kid_score.py) can be added
# to this list if desired.
eval_tasks = [
inception_score_lib.InceptionScoreTask(),
fid_score_lib.FIDScoreTask()
]
logging.info("eval_tasks: %s", eval_tasks)
for checkpoint_path in checkpoints:
step = os.path.basename(checkpoint_path).split("-")[-1]
if step == 0:
continue
export_path = os.path.join(run_config.model_dir, "tfhub", str(step))
if not tf.gfile.Exists(export_path):
module_spec.export(export_path, checkpoint_path=checkpoint_path)
default_value = -1.0
try:
result_dict = eval_gan_lib.evaluate_tfhub_module(
export_path, eval_tasks, use_tpu=use_tpu,
num_averaging_runs=num_averaging_runs)
except ValueError as nan_found_error:
result_dict = {}
logging.exception(nan_found_error)
default_value = eval_gan_lib.NAN_DETECTED
logging.info("Evaluation result for checkpoint %s: %s (default value: %s)",
checkpoint_path, result_dict, default_value)
task_manager.add_eval_result(checkpoint_path, result_dict, default_value)
示例15: test_use_labeled_classes
# 需要導入模塊: from absl import logging [as 別名]
# 或者: from absl.logging import exception [as 別名]
def test_use_labeled_classes(self, labeled_classes):
def compute_fn(image, groundtruth_boxes, groundtruth_classes,
groundtruth_labeled_classes):
tensor_dict = {
fields.InputDataFields.image:
image,
fields.InputDataFields.groundtruth_boxes:
groundtruth_boxes,
fields.InputDataFields.groundtruth_classes:
groundtruth_classes,
fields.InputDataFields.groundtruth_labeled_classes:
groundtruth_labeled_classes
}
input_transformation_fn = functools.partial(
inputs.transform_input_data,
model_preprocess_fn=_fake_model_preprocessor_fn,
image_resizer_fn=_fake_image_resizer_fn,
num_classes=3)
return input_transformation_fn(tensor_dict=tensor_dict)
image = np.random.rand(4, 4, 3).astype(np.float32)
groundtruth_boxes = np.array([[.5, .5, 1, 1], [.5, .5, 1, 1]], np.float32)
groundtruth_classes = np.array([1, 2], np.int32)
groundtruth_labeled_classes = np.array(labeled_classes, np.int32)
transformed_inputs = self.execute_cpu(compute_fn, [
image, groundtruth_boxes, groundtruth_classes,
groundtruth_labeled_classes
])
if labeled_classes == [1, 2] or labeled_classes == [1, -1, 2]:
transformed_labeled_classes = [1, 1, 0]
elif not labeled_classes:
transformed_labeled_classes = [1, 1, 1]
else:
logging.exception('Unexpected labeled_classes %r', labeled_classes)
self.assertAllEqual(
np.array(transformed_labeled_classes, np.float32),
transformed_inputs[fields.InputDataFields.groundtruth_labeled_classes])