本文整理匯總了Python中SimpleITK.sitkUInt8方法的典型用法代碼示例。如果您正苦於以下問題:Python SimpleITK.sitkUInt8方法的具體用法?Python SimpleITK.sitkUInt8怎麽用?Python SimpleITK.sitkUInt8使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類SimpleITK
的用法示例。
在下文中一共展示了SimpleITK.sitkUInt8方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: write_mask
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkUInt8 [as 別名]
def write_mask(
mask_sitk,
path_to_file,
compress=True,
verbose=True,
description=None,
):
info = "Write mask to %s" % path_to_file
if compress:
mask_sitk = sitk.Cast(mask_sitk, sitk.sitkUInt8)
info += " (uint8)"
if verbose:
ph.print_info("%s ... " % info, newline=False)
header_update = DataWriter._get_header_update(description=description)
sitkh.write_nifti_image_sitk(
mask_sitk, path_to_file, header_update=header_update)
if verbose:
print("done")
示例2: preparetraindata
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkUInt8 [as 別名]
def preparetraindata():
for i in range(0, 131, 1):
seg = sitk.ReadImage("D:\Data\LIST\src_data\segmentation-" + str(i) + ".nii", sitk.sitkUInt8)
segimg = sitk.GetArrayFromImage(seg)
src = load_itk("D:\Data\LIST\src_data\\volume-" + str(i) + ".nii")
srcimg = sitk.GetArrayFromImage(src)
seg_liverimage = segimg.copy()
seg_liverimage[segimg > 0] = 255
seg_tumorimage = segimg.copy()
seg_tumorimage[segimg == 1] = 0
seg_tumorimage[segimg == 2] = 255
gen_image_mask(srcimg, seg_liverimage, i, shape=(16, 256, 256), numberxy=5, numberz=10)
# gen_image_mask(srcimg, seg_tumorimage, i, shape=(16, 256, 256), numberxy=5, numberz=10)
開發者ID:junqiangchen,項目名稱:LiTS---Liver-Tumor-Segmentation-Challenge,代碼行數:17,代碼來源:getPatchImageAndMask.py
示例3: run
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkUInt8 [as 別名]
def run(self):
# create zero image
coverage_sitk = sitk.Image(self._reconstruction_sitk) * 0
for i, stack in enumerate(self._stacks):
print("Slices of stack %d/%d ... " % (i + 1, len(self._stacks)))
# Add each individual slice contribution
for slice in stack.get_slices():
coverage_sitk = self._add_slice_contribution(
slice, coverage_sitk)
# Cast to unsigned integer
self._coverage_sitk = sitk.Cast(coverage_sitk, sitk.sitkUInt8)
##
# Adds a slice contribution.
# \date 2019-02-23 21:27:12+0000
#
# \param slice Slice as sl.Slice object
# \param coverage_sitk sitk.Image reflecting the current iteration of
# slice coverage
#
# \return Updated slice contribution, sitk.Image
#
示例4: _compute_volume
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkUInt8 [as 別名]
def _compute_volume(file_path):
mask_sitk = sitkh.read_nifti_image_sitk(str(file_path), sitk.sitkUInt8)
# Compute mask volume
mask_nda = sitk.GetArrayFromImage(mask_sitk)
spacing = np.array(mask_sitk.GetSpacing())
volume = np.sum(mask_nda) * spacing.prod()
return volume
示例5: background_to_zero
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkUInt8 [as 別名]
def background_to_zero(in_file, background_file, out_file):
sitk.WriteImage(sitk.Mask(sitk.ReadImage(in_file), sitk.ReadImage(background_file, sitk.sitkUInt8) == 0),
out_file)
return out_file
示例6: _run_bet_for_brain_stripping
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkUInt8 [as 別名]
def _run_bet_for_brain_stripping(self, debug=0):
filename_out = "image"
self._dir_tmp = ph.create_directory(self._dir_tmp, delete_files=True)
path_to_image = os.path.join(
self._dir_tmp, filename_out + ".nii.gz")
path_to_res = os.path.join(
self._dir_tmp, filename_out + "_bet.nii.gz")
path_to_res_mask = os.path.join(
self._dir_tmp, filename_out + "_bet_mask.nii.gz")
path_to_res_skull = os.path.join(
self._dir_tmp, filename_out + "_bet_skull.nii.gz")
sitkh.write_nifti_image_sitk(self._sitk, path_to_image)
bet = nipype.interfaces.fsl.BET()
bet.inputs.in_file = path_to_image
bet.inputs.out_file = path_to_res
options = ""
if not self._compute_brain_image:
options += "-n "
if self._compute_brain_mask:
options += "-m "
if self._compute_skull_image:
options += "-s "
options += self._bet_options
bet.inputs.args = options
if debug:
print(bet.cmdline)
bet.run()
if self._compute_brain_image:
self._sitk_brain_image = sitkh.read_nifti_image_sitk(
path_to_res, sitk.sitkFloat64)
if self._compute_brain_mask:
self._sitk_brain_mask = sitkh.read_nifti_image_sitk(
path_to_res_mask, sitk.sitkUInt8)
if self._compute_skull_image:
self._sitk_skull_image = sitkh.read_nifti_image_sitk(
path_to_res_skull)