當前位置: 首頁>>代碼示例>>Python>>正文


Python SimpleITK.sitkNearestNeighbor方法代碼示例

本文整理匯總了Python中SimpleITK.sitkNearestNeighbor方法的典型用法代碼示例。如果您正苦於以下問題:Python SimpleITK.sitkNearestNeighbor方法的具體用法?Python SimpleITK.sitkNearestNeighbor怎麽用?Python SimpleITK.sitkNearestNeighbor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在SimpleITK的用法示例。


在下文中一共展示了SimpleITK.sitkNearestNeighbor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: resample_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def resample_image(itk_image, out_spacing=[1.0, 1.0, 1.0], is_label=False):
    original_spacing = itk_image.GetSpacing()
    original_size = itk_image.GetSize()

    out_size = [
        int(np.round(original_size[0] * (original_spacing[0] / out_spacing[0]))),
        int(np.round(original_size[1] * (original_spacing[1] / out_spacing[1]))),
        int(np.round(original_size[2] * (original_spacing[2] / out_spacing[2])))
    ]

    resample = sitk.ResampleImageFilter()
    resample.SetOutputSpacing(out_spacing)
    resample.SetSize(out_size)
    resample.SetOutputDirection(itk_image.GetDirection())
    resample.SetOutputOrigin(itk_image.GetOrigin())
    resample.SetTransform(sitk.Transform())
    resample.SetDefaultPixelValue(itk_image.GetPixelIDValue())

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        resample.SetInterpolator(sitk.sitkBSpline)

    return resample.Execute(itk_image) 
開發者ID:DLTK,項目名稱:DLTK,代碼行數:26,代碼來源:download_IXI_Guys.py

示例2: resample_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def resample_image(itk_image, out_spacing=(1.0, 1.0, 1.0), is_label=False):
    original_spacing = itk_image.GetSpacing()
    original_size = itk_image.GetSize()

    out_size = [int(np.round(original_size[0] * (original_spacing[0] / out_spacing[0]))),
                int(np.round(original_size[1] * (original_spacing[1] / out_spacing[1]))),
                int(np.round(original_size[2] * (original_spacing[2] / out_spacing[2])))]

    resample = sitk.ResampleImageFilter()
    resample.SetOutputSpacing(out_spacing)
    resample.SetSize(out_size)
    resample.SetOutputDirection(itk_image.GetDirection())
    resample.SetOutputOrigin(itk_image.GetOrigin())
    resample.SetTransform(sitk.Transform())
    resample.SetDefaultPixelValue(itk_image.GetPixelIDValue())

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        resample.SetInterpolator(sitk.sitkBSpline)

    return resample.Execute(itk_image) 
開發者ID:DLTK,項目名稱:DLTK,代碼行數:24,代碼來源:download_IXI_HH.py

示例3: PostPadding

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def PostPadding(self, seg_post_3d, postProcessList, max_size=(256, 256)):
        """
        Handle : Resizing or post padding operations to get back image to original shape
        """
        # Resize and Pad the output 3d volume to its original dimension 
        # If the ROI extraction resized the image then upsample to the original shape
        boResized = self.input_img['resized']
        if boResized:
            # Upsample the image to max_size = (256, 256)
            seg_resized = np.zeros((seg_post_3d.shape[0], max_size[0], max_size[1]), dtype=np.uint8)
            for slice in range(seg_post_3d.shape[0]):
                seg_resized[slice] = resize_sitk_2D(seg_post_3d[slice], max_size, interpolator=sitk.sitkNearestNeighbor) 
            seg_post_3d = seg_resized

        if 'pad_patch' in postProcessList:
            seg_post_3d = pad_3Dpatch(seg_post_3d, self.input_img['pad_params'])
        # print (seg_post_3d.shape)
        return swapaxes_to_xyz(seg_post_3d) 
開發者ID:mahendrakhened,項目名稱:Automated-Cardiac-Segmentation-and-Disease-Diagnosis,代碼行數:20,代碼來源:test_utils.py

示例4: _add_slice_contribution

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def _add_slice_contribution(slice, coverage_sitk):

        #
        slice_sitk = sitk.Image(slice.sitk)
        spacing = np.array(slice_sitk.GetSpacing())
        spacing[-1] = slice.get_slice_thickness()
        slice_sitk.SetSpacing(spacing)

        contrib_nda = sitk.GetArrayFromImage(slice_sitk)
        contrib_nda[:] = 1
        contrib_sitk = sitk.GetImageFromArray(contrib_nda)
        contrib_sitk.CopyInformation(slice_sitk)

        coverage_sitk += sitk.Resample(
            contrib_sitk,
            coverage_sitk,
            sitk.Euler3DTransform(),
            sitk.sitkNearestNeighbor,
            0,
            coverage_sitk.GetPixelIDValue(),
        )

        return coverage_sitk 
開發者ID:gift-surg,項目名稱:NiftyMIC,代碼行數:25,代碼來源:slice_coverage.py

示例5: reslice_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def reslice_image(itk_image, itk_ref, is_label=False):
    resample = sitk.ResampleImageFilter()
    resample.SetReferenceImage(itk_ref)

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        resample.SetInterpolator(sitk.sitkBSpline)

    return resample.Execute(itk_image) 
開發者ID:DLTK,項目名稱:DLTK,代碼行數:12,代碼來源:download_IXI_Guys.py

示例6: resize_sitk_2D

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def resize_sitk_2D(image_array, outputSize=None, interpolator=sitk.sitkLinear):
    """
    Resample 2D images Image:
    For Labels use nearest neighbour
    For image use 
    sitkNearestNeighbor = 1,
    sitkLinear = 2,
    sitkBSpline = 3,
    sitkGaussian = 4,
    sitkLabelGaussian = 5, 
    """
    image = sitk.GetImageFromArray(image_array) 
    inputSize = image.GetSize()
    inputSpacing = image.GetSpacing()
    outputSpacing = [1.0, 1.0]
    if outputSize:
        outputSpacing[0] = inputSpacing[0] * (inputSize[0] /outputSize[0]);
        outputSpacing[1] = inputSpacing[1] * (inputSize[1] / outputSize[1]);
    else:
        # If No outputSize is specified then resample to 1mm spacing
        outputSize = [0.0, 0.0]
        outputSize[0] = int(inputSize[0] * inputSpacing[0] / outputSpacing[0] + .5)
        outputSize[1] = int(inputSize[1] * inputSpacing[1] / outputSpacing[1] + .5)
    resampler = sitk.ResampleImageFilter()
    resampler.SetSize(outputSize)
    resampler.SetOutputSpacing(outputSpacing)
    resampler.SetOutputOrigin(image.GetOrigin())
    resampler.SetOutputDirection(image.GetDirection())
    resampler.SetInterpolator(interpolator)
    resampler.SetDefaultPixelValue(0)
    image = resampler.Execute(image)
    resampled_arr = sitk.GetArrayFromImage(image)
    return resampled_arr 
開發者ID:mahendrakhened,項目名稱:Automated-Cardiac-Segmentation-and-Disease-Diagnosis,代碼行數:35,代碼來源:data_augmentation.py

示例7: get_warped_moving

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def get_warped_moving(self):

        warped_moving_sitk_mask = sitk.Resample(
            self._moving.sitk_mask,
            self._fixed.sitk,
            self.get_registration_transform_sitk(),
            sitk.sitkNearestNeighbor,
            0,
            self._moving.sitk_mask.GetPixelIDValue(),
        )

        if isinstance(self._moving, st.Stack):
            warped_moving = st.Stack.from_sitk_image(
                image_sitk=self._get_warped_moving_sitk(),
                filename=self._moving.get_filename(),
                image_sitk_mask=warped_moving_sitk_mask,
                slice_thickness=self._fixed.get_slice_thickness(),
            )
        else:
            warped_moving = sl.Slice.from_sitk_image(
                image_sitk=self._get_warped_moving_sitk(),
                filename=self._moving.get_filename(),
                image_sitk_mask=warped_moving_sitk_mask,
                slice_thickness=self._fixed.get_slice_thickness(),
            )
        return warped_moving

    ##
    # Gets the fixed image transformed by the obtained registration transform.
    #
    # The returned image will align the fixed image with the moving image as
    # found during the registration.
    # \date       2017-08-08 16:53:21+0100
    #
    # \param      self  The object
    #
    # \return     The transformed fixed as Stack/Slice object
    # 
開發者ID:gift-surg,項目名稱:NiftyMIC,代碼行數:40,代碼來源:registration_method.py

示例8: run

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def run(self):

        recon_space = self._target.get_isotropically_resampled_stack(
            extra_frame=self._max_distance,
        )
        mask_sitk = 0 * recon_space.sitk_mask
        dim = mask_sitk.GetDimension()

        for stack in self._stacks:
            stack_mask_sitk = sitk.Resample(
                stack.sitk_mask,
                mask_sitk,
                eval("sitk.Euler%dDTransform()" % dim),
                sitk.sitkNearestNeighbor,
                0,
                mask_sitk.GetPixelIDValue())
            mask_sitk += stack_mask_sitk

        thresholder = sitk.BinaryThresholdImageFilter()
        mask_sitk = thresholder.Execute(mask_sitk, 0, 0.5, 0, 1)

        if self._dilation_radius > 0:
            dilater = sitk.BinaryDilateImageFilter()
            dilater.SetKernelType(eval("sitk.sitk" + self._dilation_kernel))
            dilater.SetKernelRadius(self._dilation_radius)
            mask_sitk = dilater.Execute(mask_sitk)

        self._joint_image_mask = st.Stack.from_sitk_image(
            image_sitk=recon_space.sitk,
            image_sitk_mask=mask_sitk,
            filename=self._target.get_filename(),
            slice_thickness=recon_space.get_slice_thickness(),
        ) 
開發者ID:gift-surg,項目名稱:NiftyMIC,代碼行數:35,代碼來源:joint_image_mask_builder.py

示例9: run_bias_field_correction

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def run_bias_field_correction(self):

        time_start = ph.start_timing()

        bias_field_corrector = sitk.N4BiasFieldCorrectionImageFilter()

        bias_field_corrector.SetBiasFieldFullWidthAtHalfMaximum(
            self._bias_field_fwhm)
        bias_field_corrector.SetConvergenceThreshold(
            self._convergence_threshold)
        bias_field_corrector.SetSplineOrder(self._spline_order)
        bias_field_corrector.SetWienerFilterNoise(self._wiener_filter_noise)

        if self._use_mask:
            image_sitk = bias_field_corrector.Execute(
                self._stack.sitk, self._stack.sitk_mask)
        else:
            image_sitk = bias_field_corrector.Execute(self._stack.sitk)

        # Reading of image might lead to slight differences
        stack_corrected_sitk_mask = sitk.Resample(
            self._stack.sitk_mask,
            image_sitk,
            sitk.Euler3DTransform(),
            sitk.sitkNearestNeighbor,
            0,
            self._stack.sitk_mask.GetPixelIDValue())

        self._stack_corrected = st.Stack.from_sitk_image(
            image_sitk=image_sitk,
            image_sitk_mask=stack_corrected_sitk_mask,
            filename=self._prefix_corrected + self._stack.get_filename(),
            slice_thickness=self._stack.get_slice_thickness(),
        )

        # Get computational time
        self._computational_time = ph.stop_timing(time_start)

        # Debug
        # sitkh.show_stacks([self._stack, self._stack_corrected], label=["orig", "corr"]) 
開發者ID:gift-surg,項目名稱:NiftyMIC,代碼行數:42,代碼來源:n4_bias_field_correction.py

示例10: reorient_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def reorient_image(image):
    """Reorients an image to standard radiology view."""

    dir = np.array(image.GetDirection()).reshape(len(image.GetSize()), -1)
    ind = np.argmax(np.abs(dir), axis=0)
    new_size = np.array(image.GetSize())[ind]
    new_spacing = np.array(image.GetSpacing())[ind]
    new_extent = new_size * new_spacing
    new_dir = dir[:, ind]

    flip = np.diag(new_dir) < 0
    flip_diag = flip * -1
    flip_diag[flip_diag == 0] = 1
    flip_mat = np.diag(flip_diag)

    new_origin = np.array(image.GetOrigin()) + np.matmul(new_dir, (new_extent * flip))
    new_dir = np.matmul(new_dir, flip_mat)

    resample = sitk.ResampleImageFilter()
    resample.SetOutputSpacing(new_spacing.tolist())
    resample.SetSize(new_size.tolist())
    resample.SetOutputDirection(new_dir.flatten().tolist())
    resample.SetOutputOrigin(new_origin.tolist())
    resample.SetTransform(sitk.Transform())
    resample.SetDefaultPixelValue(image.GetPixelIDValue())
    resample.SetInterpolator(sitk.sitkNearestNeighbor)

    return resample.Execute(image) 
開發者ID:biomedia-mira,項目名稱:istn,代碼行數:30,代碼來源:processing.py

示例11: resample_image_to_ref

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def resample_image_to_ref(image, ref, is_label=False, pad_value=0):
    """Resamples an image to match the resolution and size of a given reference image."""

    resample = sitk.ResampleImageFilter()
    resample.SetReferenceImage(ref)
    resample.SetDefaultPixelValue(pad_value)

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        #resample.SetInterpolator(sitk.sitkBSpline)
        resample.SetInterpolator(sitk.sitkLinear)

    return resample.Execute(image) 
開發者ID:biomedia-mira,項目名稱:istn,代碼行數:16,代碼來源:processing.py

示例12: resample_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def resample_image(image, out_spacing=(1.0, 1.0, 1.0), out_size=None, is_label=False, pad_value=0):
    """Resamples an image to given element spacing and output size."""

    original_spacing = np.array(image.GetSpacing())
    original_size = np.array(image.GetSize())

    if out_size is None:
        out_size = np.round(np.array(original_size * original_spacing / np.array(out_spacing))).astype(int)
    else:
        out_size = np.array(out_size)

    original_direction = np.array(image.GetDirection()).reshape(len(original_spacing),-1)
    original_center = (np.array(original_size, dtype=float) - 1.0) / 2.0 * original_spacing
    out_center = (np.array(out_size, dtype=float) - 1.0) / 2.0 * np.array(out_spacing)

    original_center = np.matmul(original_direction, original_center)
    out_center = np.matmul(original_direction, out_center)
    out_origin = np.array(image.GetOrigin()) + (original_center - out_center)

    resample = sitk.ResampleImageFilter()
    resample.SetOutputSpacing(out_spacing)
    resample.SetSize(out_size.tolist())
    resample.SetOutputDirection(image.GetDirection())
    resample.SetOutputOrigin(out_origin.tolist())
    resample.SetTransform(sitk.Transform())
    resample.SetDefaultPixelValue(pad_value)

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        #resample.SetInterpolator(sitk.sitkBSpline)
        resample.SetInterpolator(sitk.sitkLinear)

    return resample.Execute(sitk.Cast(image, sitk.sitkFloat32)) 
開發者ID:biomedia-mira,項目名稱:istn,代碼行數:36,代碼來源:processing.py

示例13: resample_to_spacing

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def resample_to_spacing(data, spacing, target_spacing, interpolation="linear", default_value=0.):
    image = data_to_sitk_image(data, spacing=spacing)
    if interpolation is "linear":
        interpolator = sitk.sitkLinear
    elif interpolation is "nearest":
        interpolator = sitk.sitkNearestNeighbor
    else:
        raise ValueError("'interpolation' must be either 'linear' or 'nearest'. '{}' is not recognized".format(
            interpolation))
    resampled_image = sitk_resample_to_spacing(image, new_spacing=target_spacing, interpolator=interpolator,
                                               default_value=default_value)
    return sitk_image_to_data(resampled_image) 
開發者ID:ellisdg,項目名稱:3DUnetCNN,代碼行數:14,代碼來源:sitk_utils.py

示例14: Resampling

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def Resampling(Image,Label):
    Size=Image.GetSize()
    Spacing=Image.GetSpacing()
    Origin = Image.GetOrigin()
    Direction = Image.GetDirection()
    ImagePyramid=[]
    LabelPyramid=[]
    for i in range(3):
        NewSpacing = ToSpacing[ResRate[i]]
        NewSize=[int(Size[0]*Spacing[0]/NewSpacing[0]),int(Size[1]*Spacing[1]/NewSpacing[1]),int(Size[2]*Spacing[2]/NewSpacing[2])]       
        Resample = sitk.ResampleImageFilter()
        Resample.SetOutputDirection(Direction)
        Resample.SetOutputOrigin(Origin)
        Resample.SetSize(NewSize)
        Resample.SetInterpolator(sitk.sitkLinear)
        Resample.SetOutputSpacing(NewSpacing)
        NewImage = Resample.Execute(Image)
        ImagePyramid.append(NewImage)
        
        Resample = sitk.ResampleImageFilter()
        Resample.SetOutputDirection(Direction)
        Resample.SetOutputOrigin(Origin)
        Resample.SetSize(NewSize)
        Resample.SetOutputSpacing(NewSpacing)
        Resample.SetInterpolator(sitk.sitkNearestNeighbor)
        NewLabel = Resample.Execute(Label)
        LabelPyramid.append(NewLabel)
    return ImagePyramid,LabelPyramid

#We shift the mean value to enhance the darker side 
開發者ID:huangyjhust,項目名稱:3D-RU-Net,代碼行數:32,代碼來源:Step1_PreProcessing.py

示例15: get_sitk_interpolator

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def get_sitk_interpolator(interpolator):
    if interpolator == 'nearest':
        return sitk.sitkNearestNeighbor
    elif interpolator == 'linear':
        return sitk.sitkLinear
    elif interpolator == 'cubic':
        return sitk.sitkBSpline
    elif interpolator == 'label_gaussian':
        return sitk.sitkLabelGaussian
    elif interpolator == 'gaussian':
        return sitk.sitkGaussian
    elif interpolator == 'lanczos':
        return sitk.sitkLanczosWindowedSinc
    else:
        raise Exception('invalid interpolator type') 
開發者ID:christianpayer,項目名稱:MedicalDataAugmentationTool,代碼行數:17,代碼來源:sitk_image.py


注:本文中的SimpleITK.sitkNearestNeighbor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。