本文整理匯總了Python中SimpleITK.sitkNearestNeighbor方法的典型用法代碼示例。如果您正苦於以下問題:Python SimpleITK.sitkNearestNeighbor方法的具體用法?Python SimpleITK.sitkNearestNeighbor怎麽用?Python SimpleITK.sitkNearestNeighbor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類SimpleITK
的用法示例。
在下文中一共展示了SimpleITK.sitkNearestNeighbor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: resample_image
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def resample_image(itk_image, out_spacing=[1.0, 1.0, 1.0], is_label=False):
original_spacing = itk_image.GetSpacing()
original_size = itk_image.GetSize()
out_size = [
int(np.round(original_size[0] * (original_spacing[0] / out_spacing[0]))),
int(np.round(original_size[1] * (original_spacing[1] / out_spacing[1]))),
int(np.round(original_size[2] * (original_spacing[2] / out_spacing[2])))
]
resample = sitk.ResampleImageFilter()
resample.SetOutputSpacing(out_spacing)
resample.SetSize(out_size)
resample.SetOutputDirection(itk_image.GetDirection())
resample.SetOutputOrigin(itk_image.GetOrigin())
resample.SetTransform(sitk.Transform())
resample.SetDefaultPixelValue(itk_image.GetPixelIDValue())
if is_label:
resample.SetInterpolator(sitk.sitkNearestNeighbor)
else:
resample.SetInterpolator(sitk.sitkBSpline)
return resample.Execute(itk_image)
示例2: resample_image
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def resample_image(itk_image, out_spacing=(1.0, 1.0, 1.0), is_label=False):
original_spacing = itk_image.GetSpacing()
original_size = itk_image.GetSize()
out_size = [int(np.round(original_size[0] * (original_spacing[0] / out_spacing[0]))),
int(np.round(original_size[1] * (original_spacing[1] / out_spacing[1]))),
int(np.round(original_size[2] * (original_spacing[2] / out_spacing[2])))]
resample = sitk.ResampleImageFilter()
resample.SetOutputSpacing(out_spacing)
resample.SetSize(out_size)
resample.SetOutputDirection(itk_image.GetDirection())
resample.SetOutputOrigin(itk_image.GetOrigin())
resample.SetTransform(sitk.Transform())
resample.SetDefaultPixelValue(itk_image.GetPixelIDValue())
if is_label:
resample.SetInterpolator(sitk.sitkNearestNeighbor)
else:
resample.SetInterpolator(sitk.sitkBSpline)
return resample.Execute(itk_image)
示例3: PostPadding
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def PostPadding(self, seg_post_3d, postProcessList, max_size=(256, 256)):
"""
Handle : Resizing or post padding operations to get back image to original shape
"""
# Resize and Pad the output 3d volume to its original dimension
# If the ROI extraction resized the image then upsample to the original shape
boResized = self.input_img['resized']
if boResized:
# Upsample the image to max_size = (256, 256)
seg_resized = np.zeros((seg_post_3d.shape[0], max_size[0], max_size[1]), dtype=np.uint8)
for slice in range(seg_post_3d.shape[0]):
seg_resized[slice] = resize_sitk_2D(seg_post_3d[slice], max_size, interpolator=sitk.sitkNearestNeighbor)
seg_post_3d = seg_resized
if 'pad_patch' in postProcessList:
seg_post_3d = pad_3Dpatch(seg_post_3d, self.input_img['pad_params'])
# print (seg_post_3d.shape)
return swapaxes_to_xyz(seg_post_3d)
開發者ID:mahendrakhened,項目名稱:Automated-Cardiac-Segmentation-and-Disease-Diagnosis,代碼行數:20,代碼來源:test_utils.py
示例4: _add_slice_contribution
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def _add_slice_contribution(slice, coverage_sitk):
#
slice_sitk = sitk.Image(slice.sitk)
spacing = np.array(slice_sitk.GetSpacing())
spacing[-1] = slice.get_slice_thickness()
slice_sitk.SetSpacing(spacing)
contrib_nda = sitk.GetArrayFromImage(slice_sitk)
contrib_nda[:] = 1
contrib_sitk = sitk.GetImageFromArray(contrib_nda)
contrib_sitk.CopyInformation(slice_sitk)
coverage_sitk += sitk.Resample(
contrib_sitk,
coverage_sitk,
sitk.Euler3DTransform(),
sitk.sitkNearestNeighbor,
0,
coverage_sitk.GetPixelIDValue(),
)
return coverage_sitk
示例5: reslice_image
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def reslice_image(itk_image, itk_ref, is_label=False):
resample = sitk.ResampleImageFilter()
resample.SetReferenceImage(itk_ref)
if is_label:
resample.SetInterpolator(sitk.sitkNearestNeighbor)
else:
resample.SetInterpolator(sitk.sitkBSpline)
return resample.Execute(itk_image)
示例6: resize_sitk_2D
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def resize_sitk_2D(image_array, outputSize=None, interpolator=sitk.sitkLinear):
"""
Resample 2D images Image:
For Labels use nearest neighbour
For image use
sitkNearestNeighbor = 1,
sitkLinear = 2,
sitkBSpline = 3,
sitkGaussian = 4,
sitkLabelGaussian = 5,
"""
image = sitk.GetImageFromArray(image_array)
inputSize = image.GetSize()
inputSpacing = image.GetSpacing()
outputSpacing = [1.0, 1.0]
if outputSize:
outputSpacing[0] = inputSpacing[0] * (inputSize[0] /outputSize[0]);
outputSpacing[1] = inputSpacing[1] * (inputSize[1] / outputSize[1]);
else:
# If No outputSize is specified then resample to 1mm spacing
outputSize = [0.0, 0.0]
outputSize[0] = int(inputSize[0] * inputSpacing[0] / outputSpacing[0] + .5)
outputSize[1] = int(inputSize[1] * inputSpacing[1] / outputSpacing[1] + .5)
resampler = sitk.ResampleImageFilter()
resampler.SetSize(outputSize)
resampler.SetOutputSpacing(outputSpacing)
resampler.SetOutputOrigin(image.GetOrigin())
resampler.SetOutputDirection(image.GetDirection())
resampler.SetInterpolator(interpolator)
resampler.SetDefaultPixelValue(0)
image = resampler.Execute(image)
resampled_arr = sitk.GetArrayFromImage(image)
return resampled_arr
開發者ID:mahendrakhened,項目名稱:Automated-Cardiac-Segmentation-and-Disease-Diagnosis,代碼行數:35,代碼來源:data_augmentation.py
示例7: get_warped_moving
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def get_warped_moving(self):
warped_moving_sitk_mask = sitk.Resample(
self._moving.sitk_mask,
self._fixed.sitk,
self.get_registration_transform_sitk(),
sitk.sitkNearestNeighbor,
0,
self._moving.sitk_mask.GetPixelIDValue(),
)
if isinstance(self._moving, st.Stack):
warped_moving = st.Stack.from_sitk_image(
image_sitk=self._get_warped_moving_sitk(),
filename=self._moving.get_filename(),
image_sitk_mask=warped_moving_sitk_mask,
slice_thickness=self._fixed.get_slice_thickness(),
)
else:
warped_moving = sl.Slice.from_sitk_image(
image_sitk=self._get_warped_moving_sitk(),
filename=self._moving.get_filename(),
image_sitk_mask=warped_moving_sitk_mask,
slice_thickness=self._fixed.get_slice_thickness(),
)
return warped_moving
##
# Gets the fixed image transformed by the obtained registration transform.
#
# The returned image will align the fixed image with the moving image as
# found during the registration.
# \date 2017-08-08 16:53:21+0100
#
# \param self The object
#
# \return The transformed fixed as Stack/Slice object
#
示例8: run
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def run(self):
recon_space = self._target.get_isotropically_resampled_stack(
extra_frame=self._max_distance,
)
mask_sitk = 0 * recon_space.sitk_mask
dim = mask_sitk.GetDimension()
for stack in self._stacks:
stack_mask_sitk = sitk.Resample(
stack.sitk_mask,
mask_sitk,
eval("sitk.Euler%dDTransform()" % dim),
sitk.sitkNearestNeighbor,
0,
mask_sitk.GetPixelIDValue())
mask_sitk += stack_mask_sitk
thresholder = sitk.BinaryThresholdImageFilter()
mask_sitk = thresholder.Execute(mask_sitk, 0, 0.5, 0, 1)
if self._dilation_radius > 0:
dilater = sitk.BinaryDilateImageFilter()
dilater.SetKernelType(eval("sitk.sitk" + self._dilation_kernel))
dilater.SetKernelRadius(self._dilation_radius)
mask_sitk = dilater.Execute(mask_sitk)
self._joint_image_mask = st.Stack.from_sitk_image(
image_sitk=recon_space.sitk,
image_sitk_mask=mask_sitk,
filename=self._target.get_filename(),
slice_thickness=recon_space.get_slice_thickness(),
)
示例9: run_bias_field_correction
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def run_bias_field_correction(self):
time_start = ph.start_timing()
bias_field_corrector = sitk.N4BiasFieldCorrectionImageFilter()
bias_field_corrector.SetBiasFieldFullWidthAtHalfMaximum(
self._bias_field_fwhm)
bias_field_corrector.SetConvergenceThreshold(
self._convergence_threshold)
bias_field_corrector.SetSplineOrder(self._spline_order)
bias_field_corrector.SetWienerFilterNoise(self._wiener_filter_noise)
if self._use_mask:
image_sitk = bias_field_corrector.Execute(
self._stack.sitk, self._stack.sitk_mask)
else:
image_sitk = bias_field_corrector.Execute(self._stack.sitk)
# Reading of image might lead to slight differences
stack_corrected_sitk_mask = sitk.Resample(
self._stack.sitk_mask,
image_sitk,
sitk.Euler3DTransform(),
sitk.sitkNearestNeighbor,
0,
self._stack.sitk_mask.GetPixelIDValue())
self._stack_corrected = st.Stack.from_sitk_image(
image_sitk=image_sitk,
image_sitk_mask=stack_corrected_sitk_mask,
filename=self._prefix_corrected + self._stack.get_filename(),
slice_thickness=self._stack.get_slice_thickness(),
)
# Get computational time
self._computational_time = ph.stop_timing(time_start)
# Debug
# sitkh.show_stacks([self._stack, self._stack_corrected], label=["orig", "corr"])
示例10: reorient_image
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def reorient_image(image):
"""Reorients an image to standard radiology view."""
dir = np.array(image.GetDirection()).reshape(len(image.GetSize()), -1)
ind = np.argmax(np.abs(dir), axis=0)
new_size = np.array(image.GetSize())[ind]
new_spacing = np.array(image.GetSpacing())[ind]
new_extent = new_size * new_spacing
new_dir = dir[:, ind]
flip = np.diag(new_dir) < 0
flip_diag = flip * -1
flip_diag[flip_diag == 0] = 1
flip_mat = np.diag(flip_diag)
new_origin = np.array(image.GetOrigin()) + np.matmul(new_dir, (new_extent * flip))
new_dir = np.matmul(new_dir, flip_mat)
resample = sitk.ResampleImageFilter()
resample.SetOutputSpacing(new_spacing.tolist())
resample.SetSize(new_size.tolist())
resample.SetOutputDirection(new_dir.flatten().tolist())
resample.SetOutputOrigin(new_origin.tolist())
resample.SetTransform(sitk.Transform())
resample.SetDefaultPixelValue(image.GetPixelIDValue())
resample.SetInterpolator(sitk.sitkNearestNeighbor)
return resample.Execute(image)
示例11: resample_image_to_ref
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def resample_image_to_ref(image, ref, is_label=False, pad_value=0):
"""Resamples an image to match the resolution and size of a given reference image."""
resample = sitk.ResampleImageFilter()
resample.SetReferenceImage(ref)
resample.SetDefaultPixelValue(pad_value)
if is_label:
resample.SetInterpolator(sitk.sitkNearestNeighbor)
else:
#resample.SetInterpolator(sitk.sitkBSpline)
resample.SetInterpolator(sitk.sitkLinear)
return resample.Execute(image)
示例12: resample_image
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def resample_image(image, out_spacing=(1.0, 1.0, 1.0), out_size=None, is_label=False, pad_value=0):
"""Resamples an image to given element spacing and output size."""
original_spacing = np.array(image.GetSpacing())
original_size = np.array(image.GetSize())
if out_size is None:
out_size = np.round(np.array(original_size * original_spacing / np.array(out_spacing))).astype(int)
else:
out_size = np.array(out_size)
original_direction = np.array(image.GetDirection()).reshape(len(original_spacing),-1)
original_center = (np.array(original_size, dtype=float) - 1.0) / 2.0 * original_spacing
out_center = (np.array(out_size, dtype=float) - 1.0) / 2.0 * np.array(out_spacing)
original_center = np.matmul(original_direction, original_center)
out_center = np.matmul(original_direction, out_center)
out_origin = np.array(image.GetOrigin()) + (original_center - out_center)
resample = sitk.ResampleImageFilter()
resample.SetOutputSpacing(out_spacing)
resample.SetSize(out_size.tolist())
resample.SetOutputDirection(image.GetDirection())
resample.SetOutputOrigin(out_origin.tolist())
resample.SetTransform(sitk.Transform())
resample.SetDefaultPixelValue(pad_value)
if is_label:
resample.SetInterpolator(sitk.sitkNearestNeighbor)
else:
#resample.SetInterpolator(sitk.sitkBSpline)
resample.SetInterpolator(sitk.sitkLinear)
return resample.Execute(sitk.Cast(image, sitk.sitkFloat32))
示例13: resample_to_spacing
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def resample_to_spacing(data, spacing, target_spacing, interpolation="linear", default_value=0.):
image = data_to_sitk_image(data, spacing=spacing)
if interpolation is "linear":
interpolator = sitk.sitkLinear
elif interpolation is "nearest":
interpolator = sitk.sitkNearestNeighbor
else:
raise ValueError("'interpolation' must be either 'linear' or 'nearest'. '{}' is not recognized".format(
interpolation))
resampled_image = sitk_resample_to_spacing(image, new_spacing=target_spacing, interpolator=interpolator,
default_value=default_value)
return sitk_image_to_data(resampled_image)
示例14: Resampling
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def Resampling(Image,Label):
Size=Image.GetSize()
Spacing=Image.GetSpacing()
Origin = Image.GetOrigin()
Direction = Image.GetDirection()
ImagePyramid=[]
LabelPyramid=[]
for i in range(3):
NewSpacing = ToSpacing[ResRate[i]]
NewSize=[int(Size[0]*Spacing[0]/NewSpacing[0]),int(Size[1]*Spacing[1]/NewSpacing[1]),int(Size[2]*Spacing[2]/NewSpacing[2])]
Resample = sitk.ResampleImageFilter()
Resample.SetOutputDirection(Direction)
Resample.SetOutputOrigin(Origin)
Resample.SetSize(NewSize)
Resample.SetInterpolator(sitk.sitkLinear)
Resample.SetOutputSpacing(NewSpacing)
NewImage = Resample.Execute(Image)
ImagePyramid.append(NewImage)
Resample = sitk.ResampleImageFilter()
Resample.SetOutputDirection(Direction)
Resample.SetOutputOrigin(Origin)
Resample.SetSize(NewSize)
Resample.SetOutputSpacing(NewSpacing)
Resample.SetInterpolator(sitk.sitkNearestNeighbor)
NewLabel = Resample.Execute(Label)
LabelPyramid.append(NewLabel)
return ImagePyramid,LabelPyramid
#We shift the mean value to enhance the darker side
示例15: get_sitk_interpolator
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkNearestNeighbor [as 別名]
def get_sitk_interpolator(interpolator):
if interpolator == 'nearest':
return sitk.sitkNearestNeighbor
elif interpolator == 'linear':
return sitk.sitkLinear
elif interpolator == 'cubic':
return sitk.sitkBSpline
elif interpolator == 'label_gaussian':
return sitk.sitkLabelGaussian
elif interpolator == 'gaussian':
return sitk.sitkGaussian
elif interpolator == 'lanczos':
return sitk.sitkLanczosWindowedSinc
else:
raise Exception('invalid interpolator type')