本文整理匯總了Python中SimpleITK.sitkLinear方法的典型用法代碼示例。如果您正苦於以下問題:Python SimpleITK.sitkLinear方法的具體用法?Python SimpleITK.sitkLinear怎麽用?Python SimpleITK.sitkLinear使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類SimpleITK
的用法示例。
在下文中一共展示了SimpleITK.sitkLinear方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: produceRandomlyTranslatedImage
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def produceRandomlyTranslatedImage(image, label):
sitkImage = sitk.GetImageFromArray(image, isVector=False)
sitklabel = sitk.GetImageFromArray(label, isVector=False)
itemindex = np.where(label > 0)
randTrans = (0,np.random.randint(-np.min(itemindex[1])/2,(image.shape[1]-np.max(itemindex[1]))/2),np.random.randint(-np.min(itemindex[0])/2,(image.shape[0]-np.max(itemindex[0]))/2))
translation = sitk.TranslationTransform(3, randTrans)
resampler = sitk.ResampleImageFilter()
resampler.SetReferenceImage(sitkImage)
resampler.SetInterpolator(sitk.sitkLinear)
resampler.SetDefaultPixelValue(0)
resampler.SetTransform(translation)
outimgsitk = resampler.Execute(sitkImage)
outlabsitk = resampler.Execute(sitklabel)
outimg = sitk.GetArrayFromImage(outimgsitk)
outimg = outimg.astype(dtype=float)
outlbl = sitk.GetArrayFromImage(outlabsitk) > 0
outlbl = outlbl.astype(dtype=float)
return outimg, outlbl
示例2: __init__
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def __init__(self):
self.registration_method = sitk.ImageRegistrationMethod()
# Similarity metric settings.
self.registration_method.SetMetricAsMattesMutualInformation(numberOfHistogramBins=50)
self.registration_method.SetMetricSamplingStrategy(self.registration_method.RANDOM)
self.registration_method.SetMetricSamplingPercentage(0.01)
self.registration_method.SetInterpolator(sitk.sitkLinear)
# Optimizer settings.
self.registration_method.SetOptimizerAsGradientDescent(learningRate=1.0,
numberOfIterations=100,
convergenceMinimumValue=1e-6,
convergenceWindowSize=10)
self.registration_method.SetOptimizerScalesFromPhysicalShift()
# Setup for the multi-resolution framework.
self.registration_method.SetShrinkFactorsPerLevel(shrinkFactors = [4,2,1])
self.registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[2,1,0])
self.registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn()
示例3: interpolate_image
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def interpolate_image(image,
spacing_new,
default_voxel_value=0):
original_spacing = image.GetSpacing()
original_size = image.GetSize()
new_size = [
round(original_size[0] * (original_spacing[0] / spacing_new[0])),
round(original_size[1] * (original_spacing[1] / spacing_new[1])),
round(original_size[2] * (original_spacing[2] / spacing_new[2]))
]
log.debug(f'Got image with spacing {original_spacing} and size ' \
f'{original_size}. New spacing is {spacing_new}, new size ' \
f'is {new_size} (before padding).')
return sitk.Resample(image, new_size, sitk.Transform(),
sitk.sitkLinear, image.GetOrigin(), spacing_new,
image.GetDirection(), default_voxel_value,
image.GetPixelID())
示例4: getNumpyImages
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def getNumpyImages(self):
dat = self.getNumpyData(self.sitkImages,sitk.sitkLinear)
return dat
示例5: getNumpyGT
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def getNumpyGT(self):
dat = self.getNumpyData(self.sitkGT,sitk.sitkLinear)
for key in dat:
dat[key] = (dat[key]>0.5).astype(dtype=np.float32)
return dat
示例6: produceRandomlyDeformedImage
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def produceRandomlyDeformedImage(image, label, numcontrolpoints, stdDef):
sitkImage=sitk.GetImageFromArray(image, isVector=False)
sitklabel=sitk.GetImageFromArray(label, isVector=False)
transfromDomainMeshSize=[numcontrolpoints]*sitkImage.GetDimension()
tx = sitk.BSplineTransformInitializer(sitkImage,transfromDomainMeshSize)
params = tx.GetParameters()
paramsNp=np.asarray(params,dtype=float)
paramsNp = paramsNp + np.random.randn(paramsNp.shape[0])*stdDef
paramsNp[0:int(len(params)/3)]=0 #remove z deformations! The resolution in z is too bad
params=tuple(paramsNp)
tx.SetParameters(params)
resampler = sitk.ResampleImageFilter()
resampler.SetReferenceImage(sitkImage)
resampler.SetInterpolator(sitk.sitkLinear)
resampler.SetDefaultPixelValue(0)
resampler.SetTransform(tx)
resampler.SetDefaultPixelValue(0)
outimgsitk = resampler.Execute(sitkImage)
outlabsitk = resampler.Execute(sitklabel)
outimg = sitk.GetArrayFromImage(outimgsitk)
outimg = outimg.astype(dtype=np.float32)
outlbl = sitk.GetArrayFromImage(outlabsitk)
outlbl = (outlbl>0.5).astype(dtype=np.float32)
return outimg,outlbl
示例7: apply_warp
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def apply_warp(x, warp_field, fill_mode='reflect',
interpolator=None,
fill_constant=0, rows_idx=1, cols_idx=2):
'''Apply an spling warp field on an image'''
import SimpleITK as sitk
if interpolator is None:
interpolator = sitk.sitkLinear
# Expand deformation field (and later the image), padding for the largest
# deformation
warp_field_arr = sitk.GetArrayFromImage(warp_field)
max_deformation = np.max(np.abs(warp_field_arr))
pad = np.ceil(max_deformation).astype(np.int32)
warp_field_padded_arr = pad_image(warp_field_arr, pad_amount=pad,
mode='nearest')
warp_field_padded = sitk.GetImageFromArray(warp_field_padded_arr,
isVector=True)
# Warp x, one filter slice at a time
pattern = [el for el in range(0, x.ndim) if el not in [rows_idx, cols_idx]]
pattern += [rows_idx, cols_idx]
inv_pattern = [pattern.index(el) for el in range(x.ndim)]
x = x.transpose(pattern) # batch, channel, ...
x_shape = list(x.shape)
x = x.reshape([-1] + x_shape[2:]) # *, r, c
warp_filter = sitk.WarpImageFilter()
warp_filter.SetInterpolator(interpolator)
warp_filter.SetEdgePaddingValue(np.min(x).astype(np.double))
for i in range(x.shape[0]):
bc_pad = pad_image(x[i], pad_amount=pad, mode=fill_mode,
constant=fill_constant).T
bc_f = sitk.GetImageFromArray(bc_pad)
bc_f_warped = warp_filter.Execute(bc_f, warp_field_padded)
bc_warped = sitk.GetArrayFromImage(bc_f_warped)
x[i] = bc_warped[pad:-pad, pad:-pad].T
x = x.reshape(x_shape) # unsquash
x = x.transpose(inv_pattern)
return x
示例8: apply_warp
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def apply_warp(x, warp_field, fill_mode='reflect',
interpolator=sitk.sitkLinear,
fill_constant=0):
# Expand deformation field (and later the image), padding for the largest
# deformation
warp_field_arr = sitk.GetArrayFromImage(warp_field)
max_deformation = np.max(np.abs(warp_field_arr))
pad = np.ceil(max_deformation).astype(np.int32)
warp_field_padded_arr = pad_image(warp_field_arr, pad_amount=pad,
mode='nearest')
warp_field_padded = sitk.GetImageFromArray(warp_field_padded_arr,
isVector=True)
# Warp x, one filter slice at a time
x_warped = np.zeros(x.shape, dtype=np.float32)
warp_filter = sitk.WarpImageFilter()
warp_filter.SetInterpolator(interpolator)
warp_filter.SetEdgePaddingValue(np.min(x).astype(np.double))
for i, image in enumerate(x):
x_tmp = np.zeros(image.shape, dtype=image.dtype)
for j, channel in enumerate(image):
image_padded = pad_image(channel, pad_amount=pad, mode=fill_mode,
constant=fill_constant).T
image_f = sitk.GetImageFromArray(image_padded)
image_f_warped = warp_filter.Execute(image_f, warp_field_padded)
image_warped = sitk.GetArrayFromImage(image_f_warped)
x_tmp[j] = image_warped[pad:-pad, pad:-pad].T
x_warped[i] = x_tmp
return x_warped
示例9: warp_michal
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def warp_michal(x, warp_field):
x = apply_warp(x, warp_field, interpolator=sitk.sitkLinear,
fill_mode='constant', fill_constant=0)
return x
示例10: warp_fra
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def warp_fra(x, warp_field):
x = apply_warp_fra(x, warp_field,
interpolator=sitk.sitkLinear,
fill_mode='constant',
fill_constant=0,
rows_idx=2, cols_idx=3)
return x
示例11: resize_sitk_2D
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def resize_sitk_2D(image_array, outputSize=None, interpolator=sitk.sitkLinear):
"""
Resample 2D images Image:
For Labels use nearest neighbour
For image use
sitkNearestNeighbor = 1,
sitkLinear = 2,
sitkBSpline = 3,
sitkGaussian = 4,
sitkLabelGaussian = 5,
"""
image = sitk.GetImageFromArray(image_array)
inputSize = image.GetSize()
inputSpacing = image.GetSpacing()
outputSpacing = [1.0, 1.0]
if outputSize:
outputSpacing[0] = inputSpacing[0] * (inputSize[0] /outputSize[0]);
outputSpacing[1] = inputSpacing[1] * (inputSize[1] / outputSize[1]);
else:
# If No outputSize is specified then resample to 1mm spacing
outputSize = [0.0, 0.0]
outputSize[0] = int(inputSize[0] * inputSpacing[0] / outputSpacing[0] + .5)
outputSize[1] = int(inputSize[1] * inputSpacing[1] / outputSpacing[1] + .5)
resampler = sitk.ResampleImageFilter()
resampler.SetSize(outputSize)
resampler.SetOutputSpacing(outputSpacing)
resampler.SetOutputOrigin(image.GetOrigin())
resampler.SetOutputDirection(image.GetDirection())
resampler.SetInterpolator(interpolator)
resampler.SetDefaultPixelValue(0)
image = resampler.Execute(image)
resampled_arr = sitk.GetArrayFromImage(image)
return resampled_arr
開發者ID:mahendrakhened,項目名稱:Automated-Cardiac-Segmentation-and-Disease-Diagnosis,代碼行數:35,代碼來源:data_augmentation.py
示例12: resample_image_to_ref
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def resample_image_to_ref(image, ref, is_label=False, pad_value=0):
"""Resamples an image to match the resolution and size of a given reference image."""
resample = sitk.ResampleImageFilter()
resample.SetReferenceImage(ref)
resample.SetDefaultPixelValue(pad_value)
if is_label:
resample.SetInterpolator(sitk.sitkNearestNeighbor)
else:
#resample.SetInterpolator(sitk.sitkBSpline)
resample.SetInterpolator(sitk.sitkLinear)
return resample.Execute(image)
示例13: resample_image
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def resample_image(image, out_spacing=(1.0, 1.0, 1.0), out_size=None, is_label=False, pad_value=0):
"""Resamples an image to given element spacing and output size."""
original_spacing = np.array(image.GetSpacing())
original_size = np.array(image.GetSize())
if out_size is None:
out_size = np.round(np.array(original_size * original_spacing / np.array(out_spacing))).astype(int)
else:
out_size = np.array(out_size)
original_direction = np.array(image.GetDirection()).reshape(len(original_spacing),-1)
original_center = (np.array(original_size, dtype=float) - 1.0) / 2.0 * original_spacing
out_center = (np.array(out_size, dtype=float) - 1.0) / 2.0 * np.array(out_spacing)
original_center = np.matmul(original_direction, original_center)
out_center = np.matmul(original_direction, out_center)
out_origin = np.array(image.GetOrigin()) + (original_center - out_center)
resample = sitk.ResampleImageFilter()
resample.SetOutputSpacing(out_spacing)
resample.SetSize(out_size.tolist())
resample.SetOutputDirection(image.GetDirection())
resample.SetOutputOrigin(out_origin.tolist())
resample.SetTransform(sitk.Transform())
resample.SetDefaultPixelValue(pad_value)
if is_label:
resample.SetInterpolator(sitk.sitkNearestNeighbor)
else:
#resample.SetInterpolator(sitk.sitkBSpline)
resample.SetInterpolator(sitk.sitkLinear)
return resample.Execute(sitk.Cast(image, sitk.sitkFloat32))
示例14: resize_sitk_3D
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def resize_sitk_3D(self, image_array, outputSize=None, interpolator=sitk.sitkLinear):
"""
Resample 3D images Image:
For Labels use nearest neighbour
For image use
sitkNearestNeighbor = 1,
sitkLinear = 2,
sitkBSpline = 3,
sitkGaussian = 4,
sitkLabelGaussian = 5,
"""
image = image_array
inputSize = image.GetSize()
inputSpacing = image.GetSpacing()
outputSpacing = [1.0, 1.0, 1.0]
if outputSize:
outputSpacing[0] = inputSpacing[0] * (inputSize[0] /outputSize[0]);
outputSpacing[1] = inputSpacing[1] * (inputSize[1] / outputSize[1]);
outputSpacing[2] = inputSpacing[2] * (inputSize[2] / outputSize[2]);
else:
# If No outputSize is specified then resample to 1mm spacing
outputSize = [0.0, 0.0, 0.0]
outputSize[0] = int(inputSize[0] * inputSpacing[0] / outputSpacing[0] + .5)
outputSize[1] = int(inputSize[1] * inputSpacing[1] / outputSpacing[1] + .5)
outputSize[2] = int(inputSize[2] * inputSpacing[2] / outputSpacing[2] + .5)
resampler = sitk.ResampleImageFilter()
resampler.SetSize(outputSize)
resampler.SetOutputSpacing(outputSpacing)
resampler.SetOutputOrigin(image.GetOrigin())
resampler.SetOutputDirection(image.GetDirection())
resampler.SetInterpolator(interpolator)
resampler.SetDefaultPixelValue(0)
image = resampler.Execute(image)
return image
示例15: sitk_resample_to_spacing
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def sitk_resample_to_spacing(image, new_spacing=(1.0, 1.0, 1.0), interpolator=sitk.sitkLinear, default_value=0.):
zoom_factor = np.divide(image.GetSpacing(), new_spacing)
new_size = np.asarray(np.ceil(np.round(np.multiply(zoom_factor, image.GetSize()), decimals=5)), dtype=np.int16)
offset = calculate_origin_offset(new_spacing, image.GetSpacing())
reference_image = sitk_new_blank_image(size=new_size, spacing=new_spacing, direction=image.GetDirection(),
origin=image.GetOrigin() + offset, default_value=default_value)
return sitk_resample_to_image(image, reference_image, interpolator=interpolator, default_value=default_value)