當前位置: 首頁>>代碼示例>>Python>>正文


Python SimpleITK.sitkLinear方法代碼示例

本文整理匯總了Python中SimpleITK.sitkLinear方法的典型用法代碼示例。如果您正苦於以下問題:Python SimpleITK.sitkLinear方法的具體用法?Python SimpleITK.sitkLinear怎麽用?Python SimpleITK.sitkLinear使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在SimpleITK的用法示例。


在下文中一共展示了SimpleITK.sitkLinear方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: produceRandomlyTranslatedImage

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def produceRandomlyTranslatedImage(image, label):
    sitkImage = sitk.GetImageFromArray(image, isVector=False)
    sitklabel = sitk.GetImageFromArray(label, isVector=False)

    itemindex = np.where(label > 0)
    randTrans = (0,np.random.randint(-np.min(itemindex[1])/2,(image.shape[1]-np.max(itemindex[1]))/2),np.random.randint(-np.min(itemindex[0])/2,(image.shape[0]-np.max(itemindex[0]))/2))
    translation = sitk.TranslationTransform(3, randTrans)

    resampler = sitk.ResampleImageFilter()
    resampler.SetReferenceImage(sitkImage)
    resampler.SetInterpolator(sitk.sitkLinear)
    resampler.SetDefaultPixelValue(0)
    resampler.SetTransform(translation)

    outimgsitk = resampler.Execute(sitkImage)
    outlabsitk = resampler.Execute(sitklabel)

    outimg = sitk.GetArrayFromImage(outimgsitk)
    outimg = outimg.astype(dtype=float)

    outlbl = sitk.GetArrayFromImage(outlabsitk) > 0
    outlbl = outlbl.astype(dtype=float)

    return outimg, outlbl 
開發者ID:faustomilletari,項目名稱:VNet,代碼行數:26,代碼來源:utilities.py

示例2: __init__

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def __init__(self):
        self.registration_method = sitk.ImageRegistrationMethod()

        # Similarity metric settings.
        self.registration_method.SetMetricAsMattesMutualInformation(numberOfHistogramBins=50)
        self.registration_method.SetMetricSamplingStrategy(self.registration_method.RANDOM)
        self.registration_method.SetMetricSamplingPercentage(0.01)

        self.registration_method.SetInterpolator(sitk.sitkLinear)

        # Optimizer settings.
        self.registration_method.SetOptimizerAsGradientDescent(learningRate=1.0, 
                                                            numberOfIterations=100, 
                                                            convergenceMinimumValue=1e-6, 
                                                            convergenceWindowSize=10)
        self.registration_method.SetOptimizerScalesFromPhysicalShift()

        # Setup for the multi-resolution framework.            
        self.registration_method.SetShrinkFactorsPerLevel(shrinkFactors = [4,2,1])
        self.registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas=[2,1,0])
        self.registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn() 
開發者ID:koriavinash1,項目名稱:DeepBrainSeg,代碼行數:23,代碼來源:registration.py

示例3: interpolate_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def interpolate_image(image,
                      spacing_new,
                      default_voxel_value=0):
    original_spacing = image.GetSpacing()
    original_size = image.GetSize()
    new_size = [
        round(original_size[0] * (original_spacing[0] / spacing_new[0])),
        round(original_size[1] * (original_spacing[1] / spacing_new[1])),
        round(original_size[2] * (original_spacing[2] / spacing_new[2]))
    ]
    log.debug(f'Got image with spacing {original_spacing} and size ' \
              f'{original_size}. New spacing is {spacing_new}, new size ' \
              f'is {new_size} (before padding).')
    return sitk.Resample(image, new_size, sitk.Transform(),
                         sitk.sitkLinear, image.GetOrigin(), spacing_new,
                         image.GetDirection(), default_voxel_value,
                         image.GetPixelID()) 
開發者ID:IPMI-ICNS-UKE,項目名稱:gdl-fire-4d,代碼行數:19,代碼來源:preprocessing.py

示例4: getNumpyImages

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def getNumpyImages(self):
        dat = self.getNumpyData(self.sitkImages,sitk.sitkLinear)
        return dat 
開發者ID:faustomilletari,項目名稱:VNet,代碼行數:5,代碼來源:DataManager.py

示例5: getNumpyGT

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def getNumpyGT(self):
        dat = self.getNumpyData(self.sitkGT,sitk.sitkLinear)

        for key in dat:
            dat[key] = (dat[key]>0.5).astype(dtype=np.float32)

        return dat 
開發者ID:faustomilletari,項目名稱:VNet,代碼行數:9,代碼來源:DataManager.py

示例6: produceRandomlyDeformedImage

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def produceRandomlyDeformedImage(image, label, numcontrolpoints, stdDef):
    sitkImage=sitk.GetImageFromArray(image, isVector=False)
    sitklabel=sitk.GetImageFromArray(label, isVector=False)

    transfromDomainMeshSize=[numcontrolpoints]*sitkImage.GetDimension()

    tx = sitk.BSplineTransformInitializer(sitkImage,transfromDomainMeshSize)


    params = tx.GetParameters()

    paramsNp=np.asarray(params,dtype=float)
    paramsNp = paramsNp + np.random.randn(paramsNp.shape[0])*stdDef

    paramsNp[0:int(len(params)/3)]=0 #remove z deformations! The resolution in z is too bad

    params=tuple(paramsNp)
    tx.SetParameters(params)

    resampler = sitk.ResampleImageFilter()
    resampler.SetReferenceImage(sitkImage)
    resampler.SetInterpolator(sitk.sitkLinear)
    resampler.SetDefaultPixelValue(0)
    resampler.SetTransform(tx)

    resampler.SetDefaultPixelValue(0)
    outimgsitk = resampler.Execute(sitkImage)
    outlabsitk = resampler.Execute(sitklabel)

    outimg = sitk.GetArrayFromImage(outimgsitk)
    outimg = outimg.astype(dtype=np.float32)

    outlbl = sitk.GetArrayFromImage(outlabsitk)
    outlbl = (outlbl>0.5).astype(dtype=np.float32)

    return outimg,outlbl 
開發者ID:faustomilletari,項目名稱:VNet,代碼行數:38,代碼來源:utilities.py

示例7: apply_warp

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def apply_warp(x, warp_field, fill_mode='reflect',
               interpolator=None,
               fill_constant=0, rows_idx=1, cols_idx=2):
    '''Apply an spling warp field on an image'''
    import SimpleITK as sitk
    if interpolator is None:
        interpolator = sitk.sitkLinear
    # Expand deformation field (and later the image), padding for the largest
    # deformation
    warp_field_arr = sitk.GetArrayFromImage(warp_field)
    max_deformation = np.max(np.abs(warp_field_arr))
    pad = np.ceil(max_deformation).astype(np.int32)
    warp_field_padded_arr = pad_image(warp_field_arr, pad_amount=pad,
                                      mode='nearest')
    warp_field_padded = sitk.GetImageFromArray(warp_field_padded_arr,
                                               isVector=True)

    # Warp x, one filter slice at a time
    pattern = [el for el in range(0, x.ndim) if el not in [rows_idx, cols_idx]]
    pattern += [rows_idx, cols_idx]
    inv_pattern = [pattern.index(el) for el in range(x.ndim)]
    x = x.transpose(pattern)  # batch, channel, ...
    x_shape = list(x.shape)
    x = x.reshape([-1] + x_shape[2:])  # *, r, c
    warp_filter = sitk.WarpImageFilter()
    warp_filter.SetInterpolator(interpolator)
    warp_filter.SetEdgePaddingValue(np.min(x).astype(np.double))
    for i in range(x.shape[0]):
        bc_pad = pad_image(x[i], pad_amount=pad, mode=fill_mode,
                           constant=fill_constant).T
        bc_f = sitk.GetImageFromArray(bc_pad)
        bc_f_warped = warp_filter.Execute(bc_f, warp_field_padded)
        bc_warped = sitk.GetArrayFromImage(bc_f_warped)
        x[i] = bc_warped[pad:-pad, pad:-pad].T
    x = x.reshape(x_shape)  # unsquash
    x = x.transpose(inv_pattern)
    return x 
開發者ID:fvisin,項目名稱:dataset_loaders,代碼行數:39,代碼來源:data_augmentation.py

示例8: apply_warp

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def apply_warp(x, warp_field, fill_mode='reflect',
               interpolator=sitk.sitkLinear,
               fill_constant=0):
    # Expand deformation field (and later the image), padding for the largest
    # deformation
    warp_field_arr = sitk.GetArrayFromImage(warp_field)
    max_deformation = np.max(np.abs(warp_field_arr))
    pad = np.ceil(max_deformation).astype(np.int32)
    warp_field_padded_arr = pad_image(warp_field_arr, pad_amount=pad,
                                      mode='nearest')
    warp_field_padded = sitk.GetImageFromArray(warp_field_padded_arr,
                                               isVector=True)

    # Warp x, one filter slice at a time
    x_warped = np.zeros(x.shape, dtype=np.float32)
    warp_filter = sitk.WarpImageFilter()
    warp_filter.SetInterpolator(interpolator)
    warp_filter.SetEdgePaddingValue(np.min(x).astype(np.double))
    for i, image in enumerate(x):
        x_tmp = np.zeros(image.shape, dtype=image.dtype)
        for j, channel in enumerate(image):
            image_padded = pad_image(channel, pad_amount=pad, mode=fill_mode,
                                     constant=fill_constant).T
            image_f = sitk.GetImageFromArray(image_padded)
            image_f_warped = warp_filter.Execute(image_f, warp_field_padded)
            image_warped = sitk.GetArrayFromImage(image_f_warped)
            x_tmp[j] = image_warped[pad:-pad, pad:-pad].T
        x_warped[i] = x_tmp
    return x_warped 
開發者ID:fvisin,項目名稱:dataset_loaders,代碼行數:31,代碼來源:_verify_warp.py

示例9: warp_michal

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def warp_michal(x, warp_field):
    x = apply_warp(x, warp_field, interpolator=sitk.sitkLinear,
                   fill_mode='constant', fill_constant=0)
    return x 
開發者ID:fvisin,項目名稱:dataset_loaders,代碼行數:6,代碼來源:_verify_warp.py

示例10: warp_fra

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def warp_fra(x, warp_field):
    x = apply_warp_fra(x, warp_field,
                       interpolator=sitk.sitkLinear,
                       fill_mode='constant',
                       fill_constant=0,
                       rows_idx=2, cols_idx=3)
    return x 
開發者ID:fvisin,項目名稱:dataset_loaders,代碼行數:9,代碼來源:_verify_warp.py

示例11: resize_sitk_2D

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def resize_sitk_2D(image_array, outputSize=None, interpolator=sitk.sitkLinear):
    """
    Resample 2D images Image:
    For Labels use nearest neighbour
    For image use 
    sitkNearestNeighbor = 1,
    sitkLinear = 2,
    sitkBSpline = 3,
    sitkGaussian = 4,
    sitkLabelGaussian = 5, 
    """
    image = sitk.GetImageFromArray(image_array) 
    inputSize = image.GetSize()
    inputSpacing = image.GetSpacing()
    outputSpacing = [1.0, 1.0]
    if outputSize:
        outputSpacing[0] = inputSpacing[0] * (inputSize[0] /outputSize[0]);
        outputSpacing[1] = inputSpacing[1] * (inputSize[1] / outputSize[1]);
    else:
        # If No outputSize is specified then resample to 1mm spacing
        outputSize = [0.0, 0.0]
        outputSize[0] = int(inputSize[0] * inputSpacing[0] / outputSpacing[0] + .5)
        outputSize[1] = int(inputSize[1] * inputSpacing[1] / outputSpacing[1] + .5)
    resampler = sitk.ResampleImageFilter()
    resampler.SetSize(outputSize)
    resampler.SetOutputSpacing(outputSpacing)
    resampler.SetOutputOrigin(image.GetOrigin())
    resampler.SetOutputDirection(image.GetDirection())
    resampler.SetInterpolator(interpolator)
    resampler.SetDefaultPixelValue(0)
    image = resampler.Execute(image)
    resampled_arr = sitk.GetArrayFromImage(image)
    return resampled_arr 
開發者ID:mahendrakhened,項目名稱:Automated-Cardiac-Segmentation-and-Disease-Diagnosis,代碼行數:35,代碼來源:data_augmentation.py

示例12: resample_image_to_ref

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def resample_image_to_ref(image, ref, is_label=False, pad_value=0):
    """Resamples an image to match the resolution and size of a given reference image."""

    resample = sitk.ResampleImageFilter()
    resample.SetReferenceImage(ref)
    resample.SetDefaultPixelValue(pad_value)

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        #resample.SetInterpolator(sitk.sitkBSpline)
        resample.SetInterpolator(sitk.sitkLinear)

    return resample.Execute(image) 
開發者ID:biomedia-mira,項目名稱:istn,代碼行數:16,代碼來源:processing.py

示例13: resample_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def resample_image(image, out_spacing=(1.0, 1.0, 1.0), out_size=None, is_label=False, pad_value=0):
    """Resamples an image to given element spacing and output size."""

    original_spacing = np.array(image.GetSpacing())
    original_size = np.array(image.GetSize())

    if out_size is None:
        out_size = np.round(np.array(original_size * original_spacing / np.array(out_spacing))).astype(int)
    else:
        out_size = np.array(out_size)

    original_direction = np.array(image.GetDirection()).reshape(len(original_spacing),-1)
    original_center = (np.array(original_size, dtype=float) - 1.0) / 2.0 * original_spacing
    out_center = (np.array(out_size, dtype=float) - 1.0) / 2.0 * np.array(out_spacing)

    original_center = np.matmul(original_direction, original_center)
    out_center = np.matmul(original_direction, out_center)
    out_origin = np.array(image.GetOrigin()) + (original_center - out_center)

    resample = sitk.ResampleImageFilter()
    resample.SetOutputSpacing(out_spacing)
    resample.SetSize(out_size.tolist())
    resample.SetOutputDirection(image.GetDirection())
    resample.SetOutputOrigin(out_origin.tolist())
    resample.SetTransform(sitk.Transform())
    resample.SetDefaultPixelValue(pad_value)

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        #resample.SetInterpolator(sitk.sitkBSpline)
        resample.SetInterpolator(sitk.sitkLinear)

    return resample.Execute(sitk.Cast(image, sitk.sitkFloat32)) 
開發者ID:biomedia-mira,項目名稱:istn,代碼行數:36,代碼來源:processing.py

示例14: resize_sitk_3D

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def resize_sitk_3D(self, image_array, outputSize=None, interpolator=sitk.sitkLinear):
        """
        Resample 3D images Image:
        For Labels use nearest neighbour
        For image use
        sitkNearestNeighbor = 1,
        sitkLinear = 2,
        sitkBSpline = 3,
        sitkGaussian = 4,
        sitkLabelGaussian = 5,
        """
        image = image_array
        inputSize = image.GetSize()
        inputSpacing = image.GetSpacing()
        outputSpacing = [1.0, 1.0, 1.0]
        if outputSize:
            outputSpacing[0] = inputSpacing[0] * (inputSize[0] /outputSize[0]);
            outputSpacing[1] = inputSpacing[1] * (inputSize[1] / outputSize[1]);
            outputSpacing[2] = inputSpacing[2] * (inputSize[2] / outputSize[2]);
        else:
            # If No outputSize is specified then resample to 1mm spacing
            outputSize = [0.0, 0.0, 0.0]
            outputSize[0] = int(inputSize[0] * inputSpacing[0] / outputSpacing[0] + .5)
            outputSize[1] = int(inputSize[1] * inputSpacing[1] / outputSpacing[1] + .5)
            outputSize[2] = int(inputSize[2] * inputSpacing[2] / outputSpacing[2] + .5)
        resampler = sitk.ResampleImageFilter()
        resampler.SetSize(outputSize)
        resampler.SetOutputSpacing(outputSpacing)
        resampler.SetOutputOrigin(image.GetOrigin())
        resampler.SetOutputDirection(image.GetDirection())
        resampler.SetInterpolator(interpolator)
        resampler.SetDefaultPixelValue(0)
        image = resampler.Execute(image)
        return image 
開發者ID:koriavinash1,項目名稱:DeepBrainSeg,代碼行數:36,代碼來源:registration.py

示例15: sitk_resample_to_spacing

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkLinear [as 別名]
def sitk_resample_to_spacing(image, new_spacing=(1.0, 1.0, 1.0), interpolator=sitk.sitkLinear, default_value=0.):
    zoom_factor = np.divide(image.GetSpacing(), new_spacing)
    new_size = np.asarray(np.ceil(np.round(np.multiply(zoom_factor, image.GetSize()), decimals=5)), dtype=np.int16)
    offset = calculate_origin_offset(new_spacing, image.GetSpacing())
    reference_image = sitk_new_blank_image(size=new_size, spacing=new_spacing, direction=image.GetDirection(),
                                           origin=image.GetOrigin() + offset, default_value=default_value)
    return sitk_resample_to_image(image, reference_image, interpolator=interpolator, default_value=default_value) 
開發者ID:ellisdg,項目名稱:3DUnetCNN,代碼行數:9,代碼來源:sitk_utils.py


注:本文中的SimpleITK.sitkLinear方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。