本文整理匯總了Python中SimpleITK.sitkFloat32方法的典型用法代碼示例。如果您正苦於以下問題:Python SimpleITK.sitkFloat32方法的具體用法?Python SimpleITK.sitkFloat32怎麽用?Python SimpleITK.sitkFloat32使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類SimpleITK
的用法示例。
在下文中一共展示了SimpleITK.sitkFloat32方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: resample_images
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def resample_images(
image: sitk.Image,
transforms: List[sitk.Euler3DTransform],
interpolation: Interpolation,
) -> List[sitk.Image]:
floating = reference = image
default_value = np.float64(sitk.GetArrayViewFromImage(image).min())
transforms = transforms[1:] # first is identity
images = [image] # first is identity
for transform in transforms:
resampler = sitk.ResampleImageFilter()
resampler.SetInterpolator(get_sitk_interpolator(interpolation))
resampler.SetReferenceImage(reference)
resampler.SetOutputPixelType(sitk.sitkFloat32)
resampler.SetDefaultPixelValue(default_value)
resampler.SetTransform(transform)
resampled = resampler.Execute(floating)
images.append(resampled)
return images
示例2: N4BiasFieldCorrection
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def N4BiasFieldCorrection(src_path, dst_path):
'''
This function carry out BiasFieldCorrection for the files in a specific directory
:param src_path: path of the source file
:param dst_path: path of the target file
:return:
'''
print("N4 bias correction runs.")
inputImage = sitk.ReadImage(src_path)
maskImage = sitk.OtsuThreshold(inputImage, 0, 1, 200)
sitk.WriteImage(maskImage, dst_path)
inputImage = sitk.Cast(inputImage, sitk.sitkFloat32)
corrector = sitk.N4BiasFieldCorrectionImageFilter()
# corrector.SetMaximumNumberOfIterations(10)
output = corrector.Execute(inputImage, maskImage)
sitk.WriteImage(output, dst_path)
print("Finished N4 Bias Field Correction.....")
# normalize the data(zero mean and unit variance)
示例3: write_image
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def write_image(
image_sitk,
path_to_file,
compress=True,
verbose=True,
description=None,
):
info = "Write image to %s" % path_to_file
if compress:
image_sitk = sitk.Cast(image_sitk, sitk.sitkFloat32)
info += " (float32)"
if verbose:
ph.print_info("%s ... " % info, newline=False)
header_update = DataWriter._get_header_update(description=description)
sitkh.write_nifti_image_sitk(
image_sitk, path_to_file, header_update=header_update)
if verbose:
print("done")
示例4: itkRegionGrow
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def itkRegionGrow(im_arr, type_str, seedlist, lower=0, upper=1):
func_1 = 'CT'
func_2 = 'CC'
# get an image from the array input
image = itkEdgePreservedSmoothing.itkEdgePreservedSmoothing(im_arr, 'CF')
image = sitk.GetImageFromArray(im_arr)
image = sitk.Cast(image, sitk.sitkFloat32)
# find out the way to process the image according to type_str
if type_str == func_1:
im_new = sitk.ConnectedThreshold(image, seedlist, lower, upper)
elif type_str == func_2:
im_new = sitk.ConfidenceConnected(image, seedlist)
else:
print('Please check your spelling,'
'and try again.')
return im_new
# an example of using the function
示例5: get_transformed_image
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def get_transformed_image(self, prediction_np, reference_sitk=None, output_spacing=None, transformation=None):
"""
Returns the transformed predictions as a list of sitk images. If the transformation is None, the prediction_np image
will not be transformed, but only split and converted to a list of sitk images.
:param prediction_np: The predicted np array.
:param reference_sitk: The reference sitk image from which origin/spacing/direction is taken from.
:param output_spacing: The output spacing of the prediction_np array.
:param transformation: The sitk transformation used to transform the reference_sitk image to the network input.
:return: A list of the transformed sitk predictions.
"""
if transformation is not None:
predictions_sitk = utils.sitk_image.transform_np_output_to_sitk_input(output_image=prediction_np,
output_spacing=output_spacing,
channel_axis=self.channel_axis,
input_image_sitk=reference_sitk,
transform=transformation,
interpolator=self.interpolator,
output_pixel_type=sitk.sitkFloat32)
prediction_np = utils.sitk_np.sitk_list_to_np(predictions_sitk, axis=0)
else:
if self.channel_axis != 0:
prediction_np = utils.np_image.split_by_axis(prediction_np, self.channel_axis)
prediction_np = np.stack(prediction_np, axis=0)
return prediction_np
示例6: get_transformed_image_sitk
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def get_transformed_image_sitk(self, prediction_np, reference_sitk=None, output_spacing=None, transformation=None):
"""
Returns a list of transformed sitk images from the prediction np array for the given reference image and transformation.
:param prediction_np: The np array to transform.
:param reference_sitk: The reference sitk image.
:param output_spacing: The output spacing of the np array.
:param transformation: The transformation. If transformation is None, the prediction np array will not be transformed.
:return: A list of transformed sitk images.
"""
if transformation is not None:
predictions_sitk = utils.sitk_image.transform_np_output_to_sitk_input(output_image=prediction_np,
output_spacing=output_spacing,
channel_axis=None,
input_image_sitk=reference_sitk,
transform=transformation,
interpolator=self.interpolator,
output_pixel_type=sitk.sitkFloat32)
else:
predictions_np = utils.np_image.split_by_axis(prediction_np, self.channel_axis)
predictions_sitk = [utils.sitk_np.np_to_sitk(prediction_np) for prediction_np in predictions_np]
return predictions_sitk
示例7: normalize_image
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def normalize_image(image,
valid_min=-1024,
valid_max=3071):
image = sitk.Cast(image, sitk.sitkFloat32)
f_min_max = sitk.MinimumMaximumImageFilter()
f_min_max.Execute(image)
min_ = f_min_max.GetMinimum()
max_ = f_min_max.GetMaximum()
log.debug(f'Got image with value range [{min_}, {max_}]')
if min_ < valid_min or max_ > valid_max:
log.warning(
f'Got image with non-default hounsfield scale range: Got range ' \
f'[{min_}, {max_}]. Values will be clipped to [{valid_min}, {valid_max}].'
)
f_clamp = sitk.ClampImageFilter()
f_clamp.SetLowerBound(valid_min)
f_clamp.SetUpperBound(valid_max)
image = f_clamp.Execute(image)
f_subtract = sitk.SubtractImageFilter()
image = f_subtract.Execute(image, valid_min)
f_divide = sitk.DivideImageFilter()
return f_divide.Execute(image, valid_max - valid_min)
示例8: load_itk
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def load_itk(filename):
"""
load mhd files and normalization 0-255
:param filename:
:return:
"""
rescalFilt = sitk.RescaleIntensityImageFilter()
rescalFilt.SetOutputMaximum(255)
rescalFilt.SetOutputMinimum(0)
# Reads the image using SimpleITK
itkimage = rescalFilt.Execute(sitk.Cast(sitk.ReadImage(filename), sitk.sitkFloat32))
return itkimage
開發者ID:junqiangchen,項目名稱:LiTS---Liver-Tumor-Segmentation-Challenge,代碼行數:14,代碼來源:getPatchImageAndMask.py
示例9: loadImages
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def loadImages(self):
self.sitkImages=dict()
rescalFilt=sitk.RescaleIntensityImageFilter()
rescalFilt.SetOutputMaximum(1)
rescalFilt.SetOutputMinimum(0)
stats = sitk.StatisticsImageFilter()
m = 0.
for f in self.fileList:
self.sitkImages[f]=rescalFilt.Execute(sitk.Cast(sitk.ReadImage(join(self.srcFolder, f)),sitk.sitkFloat32))
stats.Execute(self.sitkImages[f])
m += stats.GetMean()
self.meanIntensityTrain=m/len(self.sitkImages)
示例10: loadGT
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def loadGT(self):
self.sitkGT=dict()
for f in self.gtList:
self.sitkGT[f]=sitk.Cast(sitk.ReadImage(join(self.srcFolder, f))>0.5,sitk.sitkFloat32)
示例11: apply_bspline_transform
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def apply_bspline_transform(
self,
tensor: torch.Tensor,
affine: np.ndarray,
bspline_params: np.ndarray,
interpolation: Interpolation,
) -> torch.Tensor:
assert tensor.dim() == 4
assert len(tensor) == 1
image = self.nib_to_sitk(tensor[0], affine)
floating = reference = image
bspline_transform = self.get_bspline_transform(
image,
self.num_control_points,
bspline_params,
)
self.parse_free_form_transform(
bspline_transform, self.max_displacement)
resampler = sitk.ResampleImageFilter()
resampler.SetReferenceImage(reference)
resampler.SetTransform(bspline_transform)
resampler.SetInterpolator(get_sitk_interpolator(interpolation))
resampler.SetDefaultPixelValue(tensor.min().item())
resampler.SetOutputPixelType(sitk.sitkFloat32)
resampled = resampler.Execute(floating)
np_array = sitk.GetArrayFromImage(resampled)
np_array = np_array.transpose() # ITK to NumPy
tensor[0] = torch.from_numpy(np_array)
return tensor
示例12: gen_warp_field
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def gen_warp_field(shape, sigma=0.1, grid_size=3):
'''Generate an spline warp field'''
import SimpleITK as sitk
# Initialize bspline transform
args = shape+(sitk.sitkFloat32,)
ref_image = sitk.Image(*args)
tx = sitk.BSplineTransformInitializer(ref_image, [grid_size, grid_size])
# Initialize shift in control points:
# mesh size = number of control points - spline order
p = sigma * np.random.randn(grid_size+3, grid_size+3, 2)
# Anchor the edges of the image
p[:, 0, :] = 0
p[:, -1:, :] = 0
p[0, :, :] = 0
p[-1:, :, :] = 0
# Set bspline transform parameters to the above shifts
tx.SetParameters(p.flatten())
# Compute deformation field
displacement_filter = sitk.TransformToDisplacementFieldFilter()
displacement_filter.SetReferenceImage(ref_image)
displacement_field = displacement_filter.Execute(tx)
return displacement_field
示例13: read
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def read(filename, dtype=th.float32, device='cpu'):
"""
Static method to directly read an image through the Image class
filename (str): filename of the image
dtype: specific dtype for representing the tensor
device: on which device the image has to be allocated
return (Image): an airlab image
"""
return Image(sitk.ReadImage(filename, sitk.sitkFloat32), dtype, device)
示例14: read_image_as_tensor
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def read_image_as_tensor(filename, dtype=th.float32, device='cpu'):
itk_image = sitk.ReadImage(filename, sitk.sitkFloat32)
return create_tensor_image_from_itk_image(itk_image, dtype=dtype, device=device)
示例15: resample_image
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import sitkFloat32 [as 別名]
def resample_image(image, out_spacing=(1.0, 1.0, 1.0), out_size=None, is_label=False, pad_value=0):
"""Resamples an image to given element spacing and output size."""
original_spacing = np.array(image.GetSpacing())
original_size = np.array(image.GetSize())
if out_size is None:
out_size = np.round(np.array(original_size * original_spacing / np.array(out_spacing))).astype(int)
else:
out_size = np.array(out_size)
original_direction = np.array(image.GetDirection()).reshape(len(original_spacing),-1)
original_center = (np.array(original_size, dtype=float) - 1.0) / 2.0 * original_spacing
out_center = (np.array(out_size, dtype=float) - 1.0) / 2.0 * np.array(out_spacing)
original_center = np.matmul(original_direction, original_center)
out_center = np.matmul(original_direction, out_center)
out_origin = np.array(image.GetOrigin()) + (original_center - out_center)
resample = sitk.ResampleImageFilter()
resample.SetOutputSpacing(out_spacing)
resample.SetSize(out_size.tolist())
resample.SetOutputDirection(image.GetDirection())
resample.SetOutputOrigin(out_origin.tolist())
resample.SetTransform(sitk.Transform())
resample.SetDefaultPixelValue(pad_value)
if is_label:
resample.SetInterpolator(sitk.sitkNearestNeighbor)
else:
#resample.SetInterpolator(sitk.sitkBSpline)
resample.SetInterpolator(sitk.sitkLinear)
return resample.Execute(sitk.Cast(image, sitk.sitkFloat32))