本文整理匯總了Python中SimpleITK.WriteImage方法的典型用法代碼示例。如果您正苦於以下問題:Python SimpleITK.WriteImage方法的具體用法?Python SimpleITK.WriteImage怎麽用?Python SimpleITK.WriteImage使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類SimpleITK
的用法示例。
在下文中一共展示了SimpleITK.WriteImage方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: eyesize_basic_test
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def eyesize_basic_test():
downloader = imagedownloader.ImageDownloader()
estimator = eyesize.EyeSize()
image_name = "TralitusSaltrator.jpg"
downloader.set_figshare_id("1066744")
downloader.set_image_name(image_name)
downloader.download()
input_image = sitk.ReadImage(image_name)
estimator.set_image(input_image)
estimator.set_seed_point([204,400])
eyes_segmented,radius_estimate = estimator.estimate()
sitk.WriteImage(eyes_segmented,'SegmentedEye.png')
assert radius_estimate == 85
示例2: eyesize_noisy_test
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def eyesize_noisy_test():
downloader = imagedownloader.ImageDownloader()
estimator = eyesize.EyeSize()
image_name = "TralitusSaltrator.jpg"
downloader.set_figshare_id("1066744")
downloader.set_image_name(image_name)
downloader.download()
input_image = sitk.ReadImage(image_name)
estimator.set_image(input_image)
estimator.set_seed_point([204,400])
eyes_segmented,radius_estimate = estimator.estimate()
sitk.WriteImage(eyes_segmented,'SegmentedEye.png')
expected_value = 85
assert radius_estimate == expected_value, \
"Problem with estimating radius: current: %s, expected: %s" % (radius_estimate, expected_value)
示例3: loop
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def loop(self):
if self.trigger == "internal":
if self.fps_label:
while self.inputs[0].poll():
self.camera.max_fps = self.inputs[0].recv()[self.fps_label]
t,img = self.camera.read_image()
elif self.trigger == "external":
data = self.inputs[0].recv() # wait for a signal
if data is None:
return
t,img = self.camera.get_image()
self.timer = time.time()
if self.save_folder:
if not sitk:
raise IOError("[Camera] Cannot save image, sitk is not installed !")
image = sitk.GetImageFromArray(img)
sitk.WriteImage(image,
self.save_folder + "img_%.6d_%.5f.tiff" % (
self.loops, t-self.t0))
self.loops += 1
self.send([t-self.t0,img])
示例4: N4BiasFieldCorrection
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def N4BiasFieldCorrection(src_path, dst_path):
'''
This function carry out BiasFieldCorrection for the files in a specific directory
:param src_path: path of the source file
:param dst_path: path of the target file
:return:
'''
print("N4 bias correction runs.")
inputImage = sitk.ReadImage(src_path)
maskImage = sitk.OtsuThreshold(inputImage, 0, 1, 200)
sitk.WriteImage(maskImage, dst_path)
inputImage = sitk.Cast(inputImage, sitk.sitkFloat32)
corrector = sitk.N4BiasFieldCorrectionImageFilter()
# corrector.SetMaximumNumberOfIterations(10)
output = corrector.Execute(inputImage, maskImage)
sitk.WriteImage(output, dst_path)
print("Finished N4 Bias Field Correction.....")
# normalize the data(zero mean and unit variance)
示例5: copy_BraTS_segmentation_and_convert_labels
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def copy_BraTS_segmentation_and_convert_labels(in_file, out_file):
# use this for segmentation only!!!
# nnUNet wants the labels to be continuous. BraTS is 0, 1, 2, 4 -> we make that into 0, 1, 2, 3
img = sitk.ReadImage(in_file)
img_npy = sitk.GetArrayFromImage(img)
uniques = np.unique(img_npy)
for u in uniques:
if u not in [0, 1, 2, 4]:
raise RuntimeError('unexpected label')
seg_new = np.zeros_like(img_npy)
seg_new[img_npy == 4] = 3
seg_new[img_npy == 2] = 1
seg_new[img_npy == 1] = 2
img_corr = sitk.GetImageFromArray(seg_new)
img_corr.CopyInformation(img)
sitk.WriteImage(img_corr, out_file)
示例6: ReadMhd_WriteNifty
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def ReadMhd_WriteNifty(impath,impath_new):
'''
input:param impath & impsth_new
return: imsave which aim to save the format changed image to a new designated path;
all functions used in this function are from SimpleITK
sitk.ReadImage():aim to read the pending image in
sitk.GetArrayFromImage():aim to get array from the image
sitk.GetImageFromArray()&sitk.WriteImage():both achieve to write and save the new image as what we want
'''
# main part of the function
image=sitk.ReadImage(impath)
image_arr=sitk.GetArrayFromImage(image)
imnew=sitk.GetImageFromArray(image_arr)
imsave=sitk.WriteImage(imnew,impath_new)
return imsave
# an example of using the function
# read the new image in the format of Nifity
示例7: load_remove_save
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def load_remove_save(input_file: str, output_file: str, for_which_classes: list,
minimum_valid_object_size: dict = None):
# Only objects larger than minimum_valid_object_size will be removed. Keys in minimum_valid_object_size must
# match entries in for_which_classes
img_in = sitk.ReadImage(input_file)
img_npy = sitk.GetArrayFromImage(img_in)
volume_per_voxel = float(np.prod(img_in.GetSpacing(), dtype=np.float64))
image, largest_removed, kept_size = remove_all_but_the_largest_connected_component(img_npy, for_which_classes,
volume_per_voxel,
minimum_valid_object_size)
# print(input_file, "kept:", kept_size)
img_out_itk = sitk.GetImageFromArray(image)
img_out_itk = copy_geometry(img_out_itk, img_in)
sitk.WriteImage(img_out_itk, output_file)
return largest_removed, kept_size
示例8: convert_labels_back_to_BraTS_2018_2019_convention
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def convert_labels_back_to_BraTS_2018_2019_convention(input_folder: str, output_folder: str):
"""
reads all prediction files (nifti) in the input folder, converts the labels back to BraTS convention and saves the
result in output_folder
:param input_folder:
:param output_folder:
:return:
"""
maybe_mkdir_p(output_folder)
nii = subfiles(input_folder, suffix='.nii.gz', join=False)
for n in nii:
a = sitk.ReadImage(join(input_folder, n))
b = sitk.GetArrayFromImage(a)
c = convert_labels_back_to_BraTS(b)
d = sitk.GetImageFromArray(c)
d.CopyInformation(a)
sitk.WriteImage(d, join(output_folder, n))
示例9: remove_all_but_the_two_largest_conn_comp
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def remove_all_but_the_two_largest_conn_comp(img_itk_file: str, file_out: str):
"""
This was not used. I was just curious because others used this. Turns out this is not necessary for my networks
"""
img_itk = sitk.ReadImage(img_itk_file)
img_npy = sitk.GetArrayFromImage(img_itk)
labelmap, num_labels = label((img_npy > 0).astype(int))
if num_labels > 2:
label_sizes = []
for i in range(1, num_labels + 1):
label_sizes.append(np.sum(labelmap == i))
argsrt = np.argsort(label_sizes)[::-1] # two largest are now argsrt[0] and argsrt[1]
keep_mask = (labelmap == argsrt[0] + 1) | (labelmap == argsrt[1] + 1)
img_npy[~keep_mask] = 0
new = sitk.GetImageFromArray(img_npy)
new.CopyInformation(img_itk)
sitk.WriteImage(new, file_out)
print(os.path.basename(img_itk_file), num_labels, label_sizes)
else:
shutil.copy(img_itk_file, file_out)
示例10: export_segmentations_postprocess
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def export_segmentations_postprocess(indir, outdir):
maybe_mkdir_p(outdir)
niftis = subfiles(indir, suffix='nii.gz', join=False)
for n in niftis:
print("\n", n)
identifier = str(n.split("_")[-1][:-7])
outfname = join(outdir, "test-segmentation-%s.nii" % identifier)
img = sitk.ReadImage(join(indir, n))
img_npy = sitk.GetArrayFromImage(img)
lmap, num_objects = label((img_npy > 0).astype(int))
sizes = []
for o in range(1, num_objects + 1):
sizes.append((lmap == o).sum())
mx = np.argmax(sizes) + 1
print(sizes)
img_npy[lmap != mx] = 0
img_new = sitk.GetImageFromArray(img_npy)
img_new.CopyInformation(img)
sitk.WriteImage(img_new, outfname)
示例11: split_4d_nifti
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def split_4d_nifti(filename, output_folder):
img_itk = sitk.ReadImage(filename)
dim = img_itk.GetDimension()
file_base = filename.split("/")[-1]
if dim == 3:
shutil.copy(filename, join(output_folder, file_base[:-7] + "_0000.nii.gz"))
return
elif dim != 4:
raise RuntimeError("Unexpected dimensionality: %d of file %s, cannot split" % (dim, filename))
else:
img_npy = sitk.GetArrayFromImage(img_itk)
spacing = img_itk.GetSpacing()
origin = img_itk.GetOrigin()
direction = np.array(img_itk.GetDirection()).reshape(4,4)
# now modify these to remove the fourth dimension
spacing = tuple(list(spacing[:-1]))
origin = tuple(list(origin[:-1]))
direction = tuple(direction[:-1, :-1].reshape(-1))
for i, t in enumerate(range(img_npy.shape[0])):
img = img_npy[t]
img_itk_new = sitk.GetImageFromArray(img)
img_itk_new.SetSpacing(spacing)
img_itk_new.SetOrigin(origin)
img_itk_new.SetDirection(direction)
sitk.WriteImage(img_itk_new, join(output_folder, file_base[:-7] + "_%04.0d.nii.gz" % i))
示例12: get_background_mask
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def get_background_mask(in_folder, out_file, truth_name="GlistrBoost_ManuallyCorrected"):
"""
This function computes a common background mask for all of the data in a subject folder.
:param in_folder: a subject folder from the BRATS dataset.
:param out_file: an image containing a mask that is 1 where the image data for that subject contains the background.
:param truth_name: how the truth file is labeled int he subject folder
:return: the path to the out_file
"""
background_image = None
for name in config["all_modalities"] + [truth_name]:
image = sitk.ReadImage(get_image(in_folder, name))
if background_image:
if name == truth_name and not (image.GetOrigin() == background_image.GetOrigin()):
image.SetOrigin(background_image.GetOrigin())
background_image = sitk.And(image == 0, background_image)
else:
background_image = image == 0
sitk.WriteImage(background_image, out_file)
return os.path.abspath(out_file)
示例13: correct_bias
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def correct_bias(in_file, out_file, image_type=sitk.sitkFloat64):
"""
Corrects the bias using ANTs N4BiasFieldCorrection. If this fails, will then attempt to correct bias using SimpleITK
:param in_file: input file path
:param out_file: output file path
:return: file path to the bias corrected image
"""
correct = N4BiasFieldCorrection()
correct.inputs.input_image = in_file
correct.inputs.output_image = out_file
try:
done = correct.run()
return done.outputs.output_image
except IOError:
warnings.warn(RuntimeWarning("ANTs N4BIasFieldCorrection could not be found."
"Will try using SimpleITK for bias field correction"
" which will take much longer. To fix this problem, add N4BiasFieldCorrection"
" to your PATH system variable. (example: EXPORT PATH=${PATH}:/path/to/ants/bin)"))
input_image = sitk.ReadImage(in_file, image_type)
output_image = sitk.N4BiasFieldCorrection(input_image, input_image > 0)
sitk.WriteImage(output_image, out_file)
return os.path.abspath(out_file)
示例14: _transform
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def _transform(dcm_dir,save_dir):
### from dcm to nii
reader = sitk.ImageSeriesReader()
dicom_names = reader.GetGDCMSeriesFileNames(dcm_dir)
reader.SetFileNames(dicom_names)
image2 = reader.Execute()
### transform 3D image to array
image_array = sitk.GetArrayFromImage(image2) # z,y,x
### crop the dark voxel
# new_array,range_list = get_bound(image_array)
### transform array to 3D image
image3 = sitk.GetImageFromArray(image_array)
### save 3D image
name = dcm_dir.split('/')[-1] + '.nii'
save_path = os.path.join(save_dir,name) # get the save path
sitk.WriteImage(image3,save_path)
示例15: nib_resize1
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import WriteImage [as 別名]
def nib_resize1(save_dir1,name1,image_shape):
save_path = os.path.join(save_dir1,name1)
# load
image1 = nib.load(save_path)
image_data1 = image1.get_data()
# print('before resize :',image_data1.shape)
# resize
image1 = resize(image1, image_shape)
### transform to array
image_data1 = image1.get_data()
# image_data1 = image_data1[:,:,::-1]
# print('after resize : ',image_data1.shape)
image1 = sitk.GetImageFromArray(image_data1)
sitk.WriteImage(image1,save_path)