當前位置: 首頁>>代碼示例>>Python>>正文


Python SimpleITK.Transform方法代碼示例

本文整理匯總了Python中SimpleITK.Transform方法的典型用法代碼示例。如果您正苦於以下問題:Python SimpleITK.Transform方法的具體用法?Python SimpleITK.Transform怎麽用?Python SimpleITK.Transform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在SimpleITK的用法示例。


在下文中一共展示了SimpleITK.Transform方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: resample_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Transform [as 別名]
def resample_image(itk_image, out_spacing=[1.0, 1.0, 1.0], is_label=False):
    original_spacing = itk_image.GetSpacing()
    original_size = itk_image.GetSize()

    out_size = [
        int(np.round(original_size[0] * (original_spacing[0] / out_spacing[0]))),
        int(np.round(original_size[1] * (original_spacing[1] / out_spacing[1]))),
        int(np.round(original_size[2] * (original_spacing[2] / out_spacing[2])))
    ]

    resample = sitk.ResampleImageFilter()
    resample.SetOutputSpacing(out_spacing)
    resample.SetSize(out_size)
    resample.SetOutputDirection(itk_image.GetDirection())
    resample.SetOutputOrigin(itk_image.GetOrigin())
    resample.SetTransform(sitk.Transform())
    resample.SetDefaultPixelValue(itk_image.GetPixelIDValue())

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        resample.SetInterpolator(sitk.sitkBSpline)

    return resample.Execute(itk_image) 
開發者ID:DLTK,項目名稱:DLTK,代碼行數:26,代碼來源:download_IXI_Guys.py

示例2: resample_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Transform [as 別名]
def resample_image(itk_image, out_spacing=(1.0, 1.0, 1.0), is_label=False):
    original_spacing = itk_image.GetSpacing()
    original_size = itk_image.GetSize()

    out_size = [int(np.round(original_size[0] * (original_spacing[0] / out_spacing[0]))),
                int(np.round(original_size[1] * (original_spacing[1] / out_spacing[1]))),
                int(np.round(original_size[2] * (original_spacing[2] / out_spacing[2])))]

    resample = sitk.ResampleImageFilter()
    resample.SetOutputSpacing(out_spacing)
    resample.SetSize(out_size)
    resample.SetOutputDirection(itk_image.GetDirection())
    resample.SetOutputOrigin(itk_image.GetOrigin())
    resample.SetTransform(sitk.Transform())
    resample.SetDefaultPixelValue(itk_image.GetPixelIDValue())

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        resample.SetInterpolator(sitk.sitkBSpline)

    return resample.Execute(itk_image) 
開發者ID:DLTK,項目名稱:DLTK,代碼行數:24,代碼來源:download_IXI_HH.py

示例3: _get_sitk_transform_from_filepath

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Transform [as 別名]
def _get_sitk_transform_from_filepath(self, path_to_sitk_transform):
        # Read transform as type sitk.Transform
        transform_sitk = sitk.ReadTransform(path_to_sitk_transform)

        # Convert transform to respective type, e.g. Euler, Affine etc
        # Third line in *.tfm file contains information on the transform type
        with open(path_to_sitk_transform) as f:
            content = f.readlines()
        transform_type = content[2]
        transform_type = re.sub("\n", "", transform_type)
        transform_type = transform_type.split(" ")[1]
        transform_sitk = self._transform_type[transform_type](transform_sitk)

        return transform_sitk


##
# Reads slice transformations stored in the format 'filename_slice#.tfm'.
#
# Rationale: Read only slice transformations associated with
# 'motion_correction' export achieved by the volumetric reconstruction
# algorithm
# \date       2018-01-31 19:16:00+0000
# 
開發者ID:gift-surg,項目名稱:NiftyMIC,代碼行數:26,代碼來源:data_reader.py

示例4: interpolate_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Transform [as 別名]
def interpolate_image(image,
                      spacing_new,
                      default_voxel_value=0):
    original_spacing = image.GetSpacing()
    original_size = image.GetSize()
    new_size = [
        round(original_size[0] * (original_spacing[0] / spacing_new[0])),
        round(original_size[1] * (original_spacing[1] / spacing_new[1])),
        round(original_size[2] * (original_spacing[2] / spacing_new[2]))
    ]
    log.debug(f'Got image with spacing {original_spacing} and size ' \
              f'{original_size}. New spacing is {spacing_new}, new size ' \
              f'is {new_size} (before padding).')
    return sitk.Resample(image, new_size, sitk.Transform(),
                         sitk.sitkLinear, image.GetOrigin(), spacing_new,
                         image.GetDirection(), default_voxel_value,
                         image.GetPixelID()) 
開發者ID:IPMI-ICNS-UKE,項目名稱:gdl-fire-4d,代碼行數:19,代碼來源:preprocessing.py

示例5: reorient_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Transform [as 別名]
def reorient_image(image):
    """Reorients an image to standard radiology view."""

    dir = np.array(image.GetDirection()).reshape(len(image.GetSize()), -1)
    ind = np.argmax(np.abs(dir), axis=0)
    new_size = np.array(image.GetSize())[ind]
    new_spacing = np.array(image.GetSpacing())[ind]
    new_extent = new_size * new_spacing
    new_dir = dir[:, ind]

    flip = np.diag(new_dir) < 0
    flip_diag = flip * -1
    flip_diag[flip_diag == 0] = 1
    flip_mat = np.diag(flip_diag)

    new_origin = np.array(image.GetOrigin()) + np.matmul(new_dir, (new_extent * flip))
    new_dir = np.matmul(new_dir, flip_mat)

    resample = sitk.ResampleImageFilter()
    resample.SetOutputSpacing(new_spacing.tolist())
    resample.SetSize(new_size.tolist())
    resample.SetOutputDirection(new_dir.flatten().tolist())
    resample.SetOutputOrigin(new_origin.tolist())
    resample.SetTransform(sitk.Transform())
    resample.SetDefaultPixelValue(image.GetPixelIDValue())
    resample.SetInterpolator(sitk.sitkNearestNeighbor)

    return resample.Execute(image) 
開發者ID:biomedia-mira,項目名稱:istn,代碼行數:30,代碼來源:processing.py

示例6: resample_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Transform [as 別名]
def resample_image(image, out_spacing=(1.0, 1.0, 1.0), out_size=None, is_label=False, pad_value=0):
    """Resamples an image to given element spacing and output size."""

    original_spacing = np.array(image.GetSpacing())
    original_size = np.array(image.GetSize())

    if out_size is None:
        out_size = np.round(np.array(original_size * original_spacing / np.array(out_spacing))).astype(int)
    else:
        out_size = np.array(out_size)

    original_direction = np.array(image.GetDirection()).reshape(len(original_spacing),-1)
    original_center = (np.array(original_size, dtype=float) - 1.0) / 2.0 * original_spacing
    out_center = (np.array(out_size, dtype=float) - 1.0) / 2.0 * np.array(out_spacing)

    original_center = np.matmul(original_direction, original_center)
    out_center = np.matmul(original_direction, out_center)
    out_origin = np.array(image.GetOrigin()) + (original_center - out_center)

    resample = sitk.ResampleImageFilter()
    resample.SetOutputSpacing(out_spacing)
    resample.SetSize(out_size.tolist())
    resample.SetOutputDirection(image.GetDirection())
    resample.SetOutputOrigin(out_origin.tolist())
    resample.SetTransform(sitk.Transform())
    resample.SetDefaultPixelValue(pad_value)

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        #resample.SetInterpolator(sitk.sitkBSpline)
        resample.SetInterpolator(sitk.sitkLinear)

    return resample.Execute(sitk.Cast(image, sitk.sitkFloat32)) 
開發者ID:biomedia-mira,項目名稱:istn,代碼行數:36,代碼來源:processing.py

示例7: sitk_resample_to_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Transform [as 別名]
def sitk_resample_to_image(image, reference_image, default_value=0., interpolator=sitk.sitkLinear, transform=None,
                           output_pixel_type=None):
    if transform is None:
        transform = sitk.Transform()
        transform.SetIdentity()
    if output_pixel_type is None:
        output_pixel_type = image.GetPixelID()
    resample_filter = sitk.ResampleImageFilter()
    resample_filter.SetInterpolator(interpolator)
    resample_filter.SetTransform(transform)
    resample_filter.SetOutputPixelType(output_pixel_type)
    resample_filter.SetDefaultPixelValue(default_value)
    resample_filter.SetReferenceImage(reference_image)
    return resample_filter.Execute(image) 
開發者ID:ellisdg,項目名稱:3DUnetCNN,代碼行數:16,代碼來源:sitk_utils.py

示例8: create_composite

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Transform [as 別名]
def create_composite(dim, transformations, merge_affine=False):
    """
    Creates a composite sitk transform based on a list of sitk transforms.
    :param dim: The dimension of the transformation.
    :param transformations: A list of sitk transforms.
    :param merge_affine: If true, merge affine transformations before calculating the composite transformation.
    :return: The composite sitk transform.
    """
    if merge_affine:
        merged_transformations = []
        combined_matrix = None
        for transformation in transformations:
            if isinstance(transformation, sitk.AffineTransform):
                if combined_matrix is None:
                    combined_matrix = np.eye(dim + 1)
                current_matrix = get_affine_homogeneous_matrix(dim, transformation)
                combined_matrix = current_matrix @ combined_matrix
            else:
                if combined_matrix is not None:
                    matrix, translation = get_affine_matrix_and_translation(dim, combined_matrix)
                    combined_affine_transform = sitk.AffineTransform(dim)
                    combined_affine_transform.SetMatrix(matrix)
                    combined_affine_transform.SetTranslation(translation)
                    merged_transformations.append(combined_affine_transform)
                merged_transformations.append(transformation)
                combined_matrix = None
        if combined_matrix is not None:
            matrix, translation = get_affine_matrix_and_translation(dim, combined_matrix)
            combined_affine_transform = sitk.AffineTransform(dim)
            combined_affine_transform.SetMatrix(matrix)
            combined_affine_transform.SetTranslation(translation)
            merged_transformations.append(combined_affine_transform)
        transformations = merged_transformations

    compos = sitk.Transform(dim, sitk.sitkIdentity)
    for transformation in transformations:
        compos.AddTransform(transformation)
    return compos 
開發者ID:christianpayer,項目名稱:MedicalDataAugmentationTool,代碼行數:40,代碼來源:common.py

示例9: get

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Transform [as 別名]
def get(self, **kwargs):
        """
        Returns the sitk transform based on the given parameters.
        :param kwargs: Must contain 'image', which defines the input image.
                       Must contain 'line', which defines the lin in the input image to center and scale.
                       Must contain 'output_size' and 'output_spacing', which define the output image physical space.
        :return: The sitk.Transform().
        """
        if self.dim == 2:
            return self.get_2d(**kwargs)
        elif self.dim == 3:
            return self.get_3d(**kwargs) 
開發者ID:christianpayer,項目名稱:MedicalDataAugmentationTool,代碼行數:14,代碼來源:center_line_at_y_axis.py

示例10: apply_affine_transform

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Transform [as 別名]
def apply_affine_transform(
            self,
            tensor: torch.Tensor,
            affine: np.ndarray,
            scaling_params: List[float],
            rotation_params: List[float],
            translation_params: List[float],
            interpolation: Interpolation,
            center_lps: Optional[TypeTripletFloat] = None,
            ) -> torch.Tensor:
        assert tensor.ndim == 4
        assert len(tensor) == 1

        image = self.nib_to_sitk(tensor[0], affine)
        floating = reference = image

        scaling_transform = self.get_scaling_transform(
            scaling_params,
            center_lps=center_lps,
        )
        rotation_transform = self.get_rotation_transform(
            rotation_params,
            translation_params,
            center_lps=center_lps,
        )
        transform = sitk.Transform(3, sitk.sitkComposite)
        transform.AddTransform(scaling_transform)
        transform.AddTransform(rotation_transform)

        if self.default_pad_value == 'minimum':
            default_value = tensor.min().item()
        elif self.default_pad_value == 'mean':
            default_value = get_borders_mean(image, filter_otsu=False)
        elif self.default_pad_value == 'otsu':
            default_value = get_borders_mean(image, filter_otsu=True)
        else:
            default_value = self.default_pad_value

        resampler = sitk.ResampleImageFilter()
        resampler.SetInterpolator(get_sitk_interpolator(interpolation))
        resampler.SetReferenceImage(reference)
        resampler.SetDefaultPixelValue(float(default_value))
        resampler.SetOutputPixelType(sitk.sitkFloat32)
        resampler.SetTransform(transform)
        resampled = resampler.Execute(floating)

        np_array = sitk.GetArrayFromImage(resampled)
        np_array = np_array.transpose()  # ITK to NumPy
        tensor[0] = torch.from_numpy(np_array)
        return tensor 
開發者ID:fepegar,項目名稱:torchio,代碼行數:52,代碼來源:random_affine.py


注:本文中的SimpleITK.Transform方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。