當前位置: 首頁>>代碼示例>>Python>>正文


Python SimpleITK.ResampleImageFilter方法代碼示例

本文整理匯總了Python中SimpleITK.ResampleImageFilter方法的典型用法代碼示例。如果您正苦於以下問題:Python SimpleITK.ResampleImageFilter方法的具體用法?Python SimpleITK.ResampleImageFilter怎麽用?Python SimpleITK.ResampleImageFilter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在SimpleITK的用法示例。


在下文中一共展示了SimpleITK.ResampleImageFilter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: resample_images

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def resample_images(
            image: sitk.Image,
            transforms: List[sitk.Euler3DTransform],
            interpolation: Interpolation,
            ) -> List[sitk.Image]:
        floating = reference = image
        default_value = np.float64(sitk.GetArrayViewFromImage(image).min())
        transforms = transforms[1:]  # first is identity
        images = [image]  # first is identity
        for transform in transforms:
            resampler = sitk.ResampleImageFilter()
            resampler.SetInterpolator(get_sitk_interpolator(interpolation))
            resampler.SetReferenceImage(reference)
            resampler.SetOutputPixelType(sitk.sitkFloat32)
            resampler.SetDefaultPixelValue(default_value)
            resampler.SetTransform(transform)
            resampled = resampler.Execute(floating)
            images.append(resampled)
        return images 
開發者ID:fepegar,項目名稱:torchio,代碼行數:21,代碼來源:random_motion.py

示例2: produceRandomlyTranslatedImage

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def produceRandomlyTranslatedImage(image, label):
    sitkImage = sitk.GetImageFromArray(image, isVector=False)
    sitklabel = sitk.GetImageFromArray(label, isVector=False)

    itemindex = np.where(label > 0)
    randTrans = (0,np.random.randint(-np.min(itemindex[1])/2,(image.shape[1]-np.max(itemindex[1]))/2),np.random.randint(-np.min(itemindex[0])/2,(image.shape[0]-np.max(itemindex[0]))/2))
    translation = sitk.TranslationTransform(3, randTrans)

    resampler = sitk.ResampleImageFilter()
    resampler.SetReferenceImage(sitkImage)
    resampler.SetInterpolator(sitk.sitkLinear)
    resampler.SetDefaultPixelValue(0)
    resampler.SetTransform(translation)

    outimgsitk = resampler.Execute(sitkImage)
    outlabsitk = resampler.Execute(sitklabel)

    outimg = sitk.GetArrayFromImage(outimgsitk)
    outimg = outimg.astype(dtype=float)

    outlbl = sitk.GetArrayFromImage(outlabsitk) > 0
    outlbl = outlbl.astype(dtype=float)

    return outimg, outlbl 
開發者ID:faustomilletari,項目名稱:VNet,代碼行數:26,代碼來源:utilities.py

示例3: resample_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def resample_image(itk_image, out_spacing=[1.0, 1.0, 1.0], is_label=False):
    original_spacing = itk_image.GetSpacing()
    original_size = itk_image.GetSize()

    out_size = [
        int(np.round(original_size[0] * (original_spacing[0] / out_spacing[0]))),
        int(np.round(original_size[1] * (original_spacing[1] / out_spacing[1]))),
        int(np.round(original_size[2] * (original_spacing[2] / out_spacing[2])))
    ]

    resample = sitk.ResampleImageFilter()
    resample.SetOutputSpacing(out_spacing)
    resample.SetSize(out_size)
    resample.SetOutputDirection(itk_image.GetDirection())
    resample.SetOutputOrigin(itk_image.GetOrigin())
    resample.SetTransform(sitk.Transform())
    resample.SetDefaultPixelValue(itk_image.GetPixelIDValue())

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        resample.SetInterpolator(sitk.sitkBSpline)

    return resample.Execute(itk_image) 
開發者ID:DLTK,項目名稱:DLTK,代碼行數:26,代碼來源:download_IXI_Guys.py

示例4: resample_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def resample_image(itk_image, out_spacing=(1.0, 1.0, 1.0), is_label=False):
    original_spacing = itk_image.GetSpacing()
    original_size = itk_image.GetSize()

    out_size = [int(np.round(original_size[0] * (original_spacing[0] / out_spacing[0]))),
                int(np.round(original_size[1] * (original_spacing[1] / out_spacing[1]))),
                int(np.round(original_size[2] * (original_spacing[2] / out_spacing[2])))]

    resample = sitk.ResampleImageFilter()
    resample.SetOutputSpacing(out_spacing)
    resample.SetSize(out_size)
    resample.SetOutputDirection(itk_image.GetDirection())
    resample.SetOutputOrigin(itk_image.GetOrigin())
    resample.SetTransform(sitk.Transform())
    resample.SetDefaultPixelValue(itk_image.GetPixelIDValue())

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        resample.SetInterpolator(sitk.sitkBSpline)

    return resample.Execute(itk_image) 
開發者ID:DLTK,項目名稱:DLTK,代碼行數:24,代碼來源:download_IXI_HH.py

示例5: produceRandomlyDeformedImage

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def produceRandomlyDeformedImage(image, label, numcontrolpoints, stdDef):
    sitkImage=sitk.GetImageFromArray(image, isVector=False)
    sitklabel=sitk.GetImageFromArray(label, isVector=False)

    transfromDomainMeshSize=[numcontrolpoints]*sitkImage.GetDimension()

    tx = sitk.BSplineTransformInitializer(sitkImage,transfromDomainMeshSize)


    params = tx.GetParameters()

    paramsNp=np.asarray(params,dtype=float)
    paramsNp = paramsNp + np.random.randn(paramsNp.shape[0])*stdDef

    paramsNp[0:int(len(params)/3)]=0 #remove z deformations! The resolution in z is too bad

    params=tuple(paramsNp)
    tx.SetParameters(params)

    resampler = sitk.ResampleImageFilter()
    resampler.SetReferenceImage(sitkImage)
    resampler.SetInterpolator(sitk.sitkLinear)
    resampler.SetDefaultPixelValue(0)
    resampler.SetTransform(tx)

    resampler.SetDefaultPixelValue(0)
    outimgsitk = resampler.Execute(sitkImage)
    outlabsitk = resampler.Execute(sitklabel)

    outimg = sitk.GetArrayFromImage(outimgsitk)
    outimg = outimg.astype(dtype=np.float32)

    outlbl = sitk.GetArrayFromImage(outlabsitk)
    outlbl = (outlbl>0.5).astype(dtype=np.float32)

    return outimg,outlbl 
開發者ID:faustomilletari,項目名稱:VNet,代碼行數:38,代碼來源:utilities.py

示例6: apply_bspline_transform

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def apply_bspline_transform(
            self,
            tensor: torch.Tensor,
            affine: np.ndarray,
            bspline_params: np.ndarray,
            interpolation: Interpolation,
            ) -> torch.Tensor:
        assert tensor.dim() == 4
        assert len(tensor) == 1
        image = self.nib_to_sitk(tensor[0], affine)
        floating = reference = image
        bspline_transform = self.get_bspline_transform(
            image,
            self.num_control_points,
            bspline_params,
        )
        self.parse_free_form_transform(
            bspline_transform, self.max_displacement)
        resampler = sitk.ResampleImageFilter()
        resampler.SetReferenceImage(reference)
        resampler.SetTransform(bspline_transform)
        resampler.SetInterpolator(get_sitk_interpolator(interpolation))
        resampler.SetDefaultPixelValue(tensor.min().item())
        resampler.SetOutputPixelType(sitk.sitkFloat32)
        resampled = resampler.Execute(floating)

        np_array = sitk.GetArrayFromImage(resampled)
        np_array = np_array.transpose()  # ITK to NumPy
        tensor[0] = torch.from_numpy(np_array)
        return tensor 
開發者ID:fepegar,項目名稱:torchio,代碼行數:32,代碼來源:random_elastic_deformation.py

示例7: reslice_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def reslice_image(itk_image, itk_ref, is_label=False):
    resample = sitk.ResampleImageFilter()
    resample.SetReferenceImage(itk_ref)

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        resample.SetInterpolator(sitk.sitkBSpline)

    return resample.Execute(itk_image) 
開發者ID:DLTK,項目名稱:DLTK,代碼行數:12,代碼來源:download_IXI_Guys.py

示例8: resize_sitk_2D

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def resize_sitk_2D(image_array, outputSize=None, interpolator=sitk.sitkLinear):
    """
    Resample 2D images Image:
    For Labels use nearest neighbour
    For image use 
    sitkNearestNeighbor = 1,
    sitkLinear = 2,
    sitkBSpline = 3,
    sitkGaussian = 4,
    sitkLabelGaussian = 5, 
    """
    image = sitk.GetImageFromArray(image_array) 
    inputSize = image.GetSize()
    inputSpacing = image.GetSpacing()
    outputSpacing = [1.0, 1.0]
    if outputSize:
        outputSpacing[0] = inputSpacing[0] * (inputSize[0] /outputSize[0]);
        outputSpacing[1] = inputSpacing[1] * (inputSize[1] / outputSize[1]);
    else:
        # If No outputSize is specified then resample to 1mm spacing
        outputSize = [0.0, 0.0]
        outputSize[0] = int(inputSize[0] * inputSpacing[0] / outputSpacing[0] + .5)
        outputSize[1] = int(inputSize[1] * inputSpacing[1] / outputSpacing[1] + .5)
    resampler = sitk.ResampleImageFilter()
    resampler.SetSize(outputSize)
    resampler.SetOutputSpacing(outputSpacing)
    resampler.SetOutputOrigin(image.GetOrigin())
    resampler.SetOutputDirection(image.GetDirection())
    resampler.SetInterpolator(interpolator)
    resampler.SetDefaultPixelValue(0)
    image = resampler.Execute(image)
    resampled_arr = sitk.GetArrayFromImage(image)
    return resampled_arr 
開發者ID:mahendrakhened,項目名稱:Automated-Cardiac-Segmentation-and-Disease-Diagnosis,代碼行數:35,代碼來源:data_augmentation.py

示例9: reorient_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def reorient_image(image):
    """Reorients an image to standard radiology view."""

    dir = np.array(image.GetDirection()).reshape(len(image.GetSize()), -1)
    ind = np.argmax(np.abs(dir), axis=0)
    new_size = np.array(image.GetSize())[ind]
    new_spacing = np.array(image.GetSpacing())[ind]
    new_extent = new_size * new_spacing
    new_dir = dir[:, ind]

    flip = np.diag(new_dir) < 0
    flip_diag = flip * -1
    flip_diag[flip_diag == 0] = 1
    flip_mat = np.diag(flip_diag)

    new_origin = np.array(image.GetOrigin()) + np.matmul(new_dir, (new_extent * flip))
    new_dir = np.matmul(new_dir, flip_mat)

    resample = sitk.ResampleImageFilter()
    resample.SetOutputSpacing(new_spacing.tolist())
    resample.SetSize(new_size.tolist())
    resample.SetOutputDirection(new_dir.flatten().tolist())
    resample.SetOutputOrigin(new_origin.tolist())
    resample.SetTransform(sitk.Transform())
    resample.SetDefaultPixelValue(image.GetPixelIDValue())
    resample.SetInterpolator(sitk.sitkNearestNeighbor)

    return resample.Execute(image) 
開發者ID:biomedia-mira,項目名稱:istn,代碼行數:30,代碼來源:processing.py

示例10: resample_image_to_ref

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def resample_image_to_ref(image, ref, is_label=False, pad_value=0):
    """Resamples an image to match the resolution and size of a given reference image."""

    resample = sitk.ResampleImageFilter()
    resample.SetReferenceImage(ref)
    resample.SetDefaultPixelValue(pad_value)

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        #resample.SetInterpolator(sitk.sitkBSpline)
        resample.SetInterpolator(sitk.sitkLinear)

    return resample.Execute(image) 
開發者ID:biomedia-mira,項目名稱:istn,代碼行數:16,代碼來源:processing.py

示例11: resample_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def resample_image(image, out_spacing=(1.0, 1.0, 1.0), out_size=None, is_label=False, pad_value=0):
    """Resamples an image to given element spacing and output size."""

    original_spacing = np.array(image.GetSpacing())
    original_size = np.array(image.GetSize())

    if out_size is None:
        out_size = np.round(np.array(original_size * original_spacing / np.array(out_spacing))).astype(int)
    else:
        out_size = np.array(out_size)

    original_direction = np.array(image.GetDirection()).reshape(len(original_spacing),-1)
    original_center = (np.array(original_size, dtype=float) - 1.0) / 2.0 * original_spacing
    out_center = (np.array(out_size, dtype=float) - 1.0) / 2.0 * np.array(out_spacing)

    original_center = np.matmul(original_direction, original_center)
    out_center = np.matmul(original_direction, out_center)
    out_origin = np.array(image.GetOrigin()) + (original_center - out_center)

    resample = sitk.ResampleImageFilter()
    resample.SetOutputSpacing(out_spacing)
    resample.SetSize(out_size.tolist())
    resample.SetOutputDirection(image.GetDirection())
    resample.SetOutputOrigin(out_origin.tolist())
    resample.SetTransform(sitk.Transform())
    resample.SetDefaultPixelValue(pad_value)

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        #resample.SetInterpolator(sitk.sitkBSpline)
        resample.SetInterpolator(sitk.sitkLinear)

    return resample.Execute(sitk.Cast(image, sitk.sitkFloat32)) 
開發者ID:biomedia-mira,項目名稱:istn,代碼行數:36,代碼來源:processing.py

示例12: resize_sitk_3D

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def resize_sitk_3D(self, image_array, outputSize=None, interpolator=sitk.sitkLinear):
        """
        Resample 3D images Image:
        For Labels use nearest neighbour
        For image use
        sitkNearestNeighbor = 1,
        sitkLinear = 2,
        sitkBSpline = 3,
        sitkGaussian = 4,
        sitkLabelGaussian = 5,
        """
        image = image_array
        inputSize = image.GetSize()
        inputSpacing = image.GetSpacing()
        outputSpacing = [1.0, 1.0, 1.0]
        if outputSize:
            outputSpacing[0] = inputSpacing[0] * (inputSize[0] /outputSize[0]);
            outputSpacing[1] = inputSpacing[1] * (inputSize[1] / outputSize[1]);
            outputSpacing[2] = inputSpacing[2] * (inputSize[2] / outputSize[2]);
        else:
            # If No outputSize is specified then resample to 1mm spacing
            outputSize = [0.0, 0.0, 0.0]
            outputSize[0] = int(inputSize[0] * inputSpacing[0] / outputSpacing[0] + .5)
            outputSize[1] = int(inputSize[1] * inputSpacing[1] / outputSpacing[1] + .5)
            outputSize[2] = int(inputSize[2] * inputSpacing[2] / outputSpacing[2] + .5)
        resampler = sitk.ResampleImageFilter()
        resampler.SetSize(outputSize)
        resampler.SetOutputSpacing(outputSpacing)
        resampler.SetOutputOrigin(image.GetOrigin())
        resampler.SetOutputDirection(image.GetDirection())
        resampler.SetInterpolator(interpolator)
        resampler.SetDefaultPixelValue(0)
        image = resampler.Execute(image)
        return image 
開發者ID:koriavinash1,項目名稱:DeepBrainSeg,代碼行數:36,代碼來源:registration.py

示例13: sitk_resample_to_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def sitk_resample_to_image(image, reference_image, default_value=0., interpolator=sitk.sitkLinear, transform=None,
                           output_pixel_type=None):
    if transform is None:
        transform = sitk.Transform()
        transform.SetIdentity()
    if output_pixel_type is None:
        output_pixel_type = image.GetPixelID()
    resample_filter = sitk.ResampleImageFilter()
    resample_filter.SetInterpolator(interpolator)
    resample_filter.SetTransform(transform)
    resample_filter.SetOutputPixelType(output_pixel_type)
    resample_filter.SetDefaultPixelValue(default_value)
    resample_filter.SetReferenceImage(reference_image)
    return resample_filter.Execute(image) 
開發者ID:ellisdg,項目名稱:3DUnetCNN,代碼行數:16,代碼來源:sitk_utils.py

示例14: Resampling

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def Resampling(Image,Label):
    Size=Image.GetSize()
    Spacing=Image.GetSpacing()
    Origin = Image.GetOrigin()
    Direction = Image.GetDirection()
    ImagePyramid=[]
    LabelPyramid=[]
    for i in range(3):
        NewSpacing = ToSpacing[ResRate[i]]
        NewSize=[int(Size[0]*Spacing[0]/NewSpacing[0]),int(Size[1]*Spacing[1]/NewSpacing[1]),int(Size[2]*Spacing[2]/NewSpacing[2])]       
        Resample = sitk.ResampleImageFilter()
        Resample.SetOutputDirection(Direction)
        Resample.SetOutputOrigin(Origin)
        Resample.SetSize(NewSize)
        Resample.SetInterpolator(sitk.sitkLinear)
        Resample.SetOutputSpacing(NewSpacing)
        NewImage = Resample.Execute(Image)
        ImagePyramid.append(NewImage)
        
        Resample = sitk.ResampleImageFilter()
        Resample.SetOutputDirection(Direction)
        Resample.SetOutputOrigin(Origin)
        Resample.SetSize(NewSize)
        Resample.SetOutputSpacing(NewSpacing)
        Resample.SetInterpolator(sitk.sitkNearestNeighbor)
        NewLabel = Resample.Execute(Label)
        LabelPyramid.append(NewLabel)
    return ImagePyramid,LabelPyramid

#We shift the mean value to enhance the darker side 
開發者ID:huangyjhust,項目名稱:3D-RU-Net,代碼行數:32,代碼來源:Step1_PreProcessing.py

示例15: produceRandomlyDeformedImage

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import ResampleImageFilter [as 別名]
def produceRandomlyDeformedImage(image, label, numcontrolpoints, stdDef, seed=1):
        '''
        This function comes from V-net,deform a image by B-spine interpolation
        :param image: images ,numpy array
        :param label: labels,numpy array
        :param numcontrolpoints: control point,B-spine interpolation parameters,take 2 for default
        :param stdDef: Deviation,B-spine interpolation parameters,take 15 for default
        :return: Deformed images and GT in numpy array
        '''
        sitkImage = sitk.GetImageFromArray(image, isVector=False)
        sitklabel = sitk.GetImageFromArray(label, isVector=False)

        transfromDomainMeshSize = [numcontrolpoints] * sitkImage.GetDimension()

        tx = sitk.BSplineTransformInitializer(
            sitkImage, transfromDomainMeshSize)

        params = tx.GetParameters()

        paramsNp = np.asarray(params, dtype=float)
        # 設置種子值,確保多通道時兩個通道變換程度一樣
        np.random.seed(seed)
        paramsNp = paramsNp + np.random.randn(paramsNp.shape[0]) * stdDef

        # remove z deformations! The resolution in z is too bad
        paramsNp[0:int(len(params) / 3)] = 0

        params = tuple(paramsNp)
        tx.SetParameters(params)

        resampler = sitk.ResampleImageFilter()
        resampler.SetReferenceImage(sitkImage)
        resampler.SetInterpolator(sitk.sitkLinear)
        resampler.SetDefaultPixelValue(0)
        resampler.SetTransform(tx)

        resampler.SetDefaultPixelValue(0)
        outimgsitk = resampler.Execute(sitkImage)
        outlabsitk = resampler.Execute(sitklabel)

        outimg = sitk.GetArrayFromImage(outimgsitk)
        outimg = outimg.astype(dtype=np.float32)

        outlbl = sitk.GetArrayFromImage(outlabsitk)
        # outlbl = (outlbl > 0.5).astype(dtype=np.float32)

        return outimg, outlbl 
開發者ID:JohnleeHIT,項目名稱:Brats2019,代碼行數:49,代碼來源:utils.py


注:本文中的SimpleITK.ResampleImageFilter方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。