本文整理匯總了Python中SimpleITK.GetImageFromArray方法的典型用法代碼示例。如果您正苦於以下問題:Python SimpleITK.GetImageFromArray方法的具體用法?Python SimpleITK.GetImageFromArray怎麽用?Python SimpleITK.GetImageFromArray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類SimpleITK
的用法示例。
在下文中一共展示了SimpleITK.GetImageFromArray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: loop
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def loop(self):
if self.trigger == "internal":
if self.fps_label:
while self.inputs[0].poll():
self.camera.max_fps = self.inputs[0].recv()[self.fps_label]
t,img = self.camera.read_image()
elif self.trigger == "external":
data = self.inputs[0].recv() # wait for a signal
if data is None:
return
t,img = self.camera.get_image()
self.timer = time.time()
if self.save_folder:
if not sitk:
raise IOError("[Camera] Cannot save image, sitk is not installed !")
image = sitk.GetImageFromArray(img)
sitk.WriteImage(image,
self.save_folder + "img_%.6d_%.5f.tiff" % (
self.loops, t-self.t0))
self.loops += 1
self.send([t-self.t0,img])
示例2: produceRandomlyTranslatedImage
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def produceRandomlyTranslatedImage(image, label):
sitkImage = sitk.GetImageFromArray(image, isVector=False)
sitklabel = sitk.GetImageFromArray(label, isVector=False)
itemindex = np.where(label > 0)
randTrans = (0,np.random.randint(-np.min(itemindex[1])/2,(image.shape[1]-np.max(itemindex[1]))/2),np.random.randint(-np.min(itemindex[0])/2,(image.shape[0]-np.max(itemindex[0]))/2))
translation = sitk.TranslationTransform(3, randTrans)
resampler = sitk.ResampleImageFilter()
resampler.SetReferenceImage(sitkImage)
resampler.SetInterpolator(sitk.sitkLinear)
resampler.SetDefaultPixelValue(0)
resampler.SetTransform(translation)
outimgsitk = resampler.Execute(sitkImage)
outlabsitk = resampler.Execute(sitklabel)
outimg = sitk.GetArrayFromImage(outimgsitk)
outimg = outimg.astype(dtype=float)
outlbl = sitk.GetArrayFromImage(outlabsitk) > 0
outlbl = outlbl.astype(dtype=float)
return outimg, outlbl
示例3: get_borders_mean
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def get_borders_mean(image, filter_otsu=True):
# pylint: disable=bad-whitespace
array = sitk.GetArrayViewFromImage(image)
borders_tuple = (
array[ 0, :, :],
array[-1, :, :],
array[ :, 0, :],
array[ :, -1, :],
array[ :, :, 0],
array[ :, :, -1],
)
borders_flat = np.hstack([border.ravel() for border in borders_tuple])
if not filter_otsu:
return borders_flat.mean()
borders_reshaped = borders_flat.reshape(1, 1, -1)
borders_image = sitk.GetImageFromArray(borders_reshaped)
otsu = sitk.OtsuThresholdImageFilter()
otsu.Execute(borders_image)
threshold = otsu.GetThreshold()
values = borders_flat[borders_flat < threshold]
if values.any():
default_value = values.mean()
else:
default_value = borders_flat.mean()
return default_value
示例4: itk
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def itk(self):
# flip axis to
df = Displacement(self.image.clone(), self.size, self.spacing, self.origin)
df._reverse_axis()
df.image = df.image.squeeze()
df.image = df.image.cpu()
if len(self.size) == 2:
itk_displacement = sitk.GetImageFromArray(df.image.numpy(), isVector=True)
elif len(self.size) == 3:
itk_displacement = sitk.GetImageFromArray(df.image.numpy())
itk_displacement.SetSpacing(spacing=self.spacing)
itk_displacement.SetOrigin(origin=self.origin)
return itk_displacement
示例5: copy_BraTS_segmentation_and_convert_labels
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def copy_BraTS_segmentation_and_convert_labels(in_file, out_file):
# use this for segmentation only!!!
# nnUNet wants the labels to be continuous. BraTS is 0, 1, 2, 4 -> we make that into 0, 1, 2, 3
img = sitk.ReadImage(in_file)
img_npy = sitk.GetArrayFromImage(img)
uniques = np.unique(img_npy)
for u in uniques:
if u not in [0, 1, 2, 4]:
raise RuntimeError('unexpected label')
seg_new = np.zeros_like(img_npy)
seg_new[img_npy == 4] = 3
seg_new[img_npy == 2] = 1
seg_new[img_npy == 1] = 2
img_corr = sitk.GetImageFromArray(seg_new)
img_corr.CopyInformation(img)
sitk.WriteImage(img_corr, out_file)
示例6: preprocess_img
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def preprocess_img(inputfile, output_preprocessed, zooms):
img = nib.load(inputfile)
data = img.get_data()
affine = img.affine
zoom = img.header.get_zooms()[:3]
data, affine = reslice(data, affine, zoom, zooms, 1)
data = np.squeeze(data)
data = np.pad(data, [(0, 256 - len_) for len_ in data.shape], "constant")
data_sub = data - gaussian_filter(data, sigma=1)
img = sitk.GetImageFromArray(np.copy(data_sub))
img = sitk.AdaptiveHistogramEqualization(img)
data_clahe = sitk.GetArrayFromImage(img)[:, :, :, None]
data = np.concatenate((data_clahe, data[:, :, :, None]), 3)
data = (data - np.mean(data, (0, 1, 2))) / np.std(data, (0, 1, 2))
assert data.ndim == 4, data.ndim
assert np.allclose(np.mean(data, (0, 1, 2)), 0.), np.mean(data, (0, 1, 2))
assert np.allclose(np.std(data, (0, 1, 2)), 1.), np.std(data, (0, 1, 2))
data = np.float32(data)
img = nib.Nifti1Image(data, affine)
nib.save(img, output_preprocessed)
示例7: CalDice
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def CalDice(self, pred, gt, class_lbl=1):
"""
Calculate dice score
"""
# intersection = np.sum((pred == class_lbl) & (gt == class_lbl))
# dice_4d = 2.0 *(intersection)/(np.sum(pred == class_lbl) + np.sum(gt == class_lbl))
dices = []
for i in range(pred.shape[3]):
labelPred=sitk.GetImageFromArray(pred[:,:,:,i], isVector=False)
labelTrue=sitk.GetImageFromArray(gt[:,:,:,i], isVector=False)
dicecomputer=sitk.LabelOverlapMeasuresImageFilter()
dicecomputer.Execute(labelTrue==class_lbl,labelPred==class_lbl)
dice=dicecomputer.GetDiceCoefficient()
dices.append(dice)
# print (np.mean(dices), dice_4d)
return np.mean(dices)
開發者ID:mahendrakhened,項目名稱:Automated-Cardiac-Segmentation-and-Disease-Diagnosis,代碼行數:18,代碼來源:test_utils.py
示例8: _add_slice_contribution
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def _add_slice_contribution(slice, coverage_sitk):
#
slice_sitk = sitk.Image(slice.sitk)
spacing = np.array(slice_sitk.GetSpacing())
spacing[-1] = slice.get_slice_thickness()
slice_sitk.SetSpacing(spacing)
contrib_nda = sitk.GetArrayFromImage(slice_sitk)
contrib_nda[:] = 1
contrib_sitk = sitk.GetImageFromArray(contrib_nda)
contrib_sitk.CopyInformation(slice_sitk)
coverage_sitk += sitk.Resample(
contrib_sitk,
coverage_sitk,
sitk.Euler3DTransform(),
sitk.sitkNearestNeighbor,
0,
coverage_sitk.GetPixelIDValue(),
)
return coverage_sitk
示例9: run
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def run(self):
mask_sitk = self._srr_mask_sitk
# Smooth mask
mask_sitk = sitk.SmoothingRecursiveGaussian(mask_sitk, self._sigma)
# Binarize images given thresholds
mask_sitk = sitk.BinaryThreshold(
mask_sitk, lowerThreshold=self._lower, upperThreshold=self._upper)
# Keep largest connected region only
nda = sitk.GetArrayFromImage(mask_sitk)
nda = tse.TemplateStackEstimator.get_largest_connected_region_mask(nda)
self._mask_sitk = sitk.GetImageFromArray(nda)
self._mask_sitk.CopyInformation(mask_sitk)
示例10: hausdorff_distance
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def hausdorff_distance(predictions, labels, one_hot=False, unindexed_classes=0, spacing=[1, 1, 1]):
def one_class_hausdorff_distance(pred, lab):
hausdorff_distance_filter = sitk.HausdorffDistanceImageFilter()
batch = pred.shape[0]
result = []
for i in range(batch):
pred_img = sitk.GetImageFromArray(pred[i].cpu().numpy())
pred_img.SetSpacing(spacing)
lab_img = sitk.GetImageFromArray(lab[i].cpu().numpy())
lab_img.SetSpacing(spacing)
hausdorff_distance_filter.Execute(pred_img, lab_img)
result.append(hausdorff_distance_filter.GetHausdorffDistance())
return torch.tensor(np.asarray(result))
return multi_class_score(one_class_hausdorff_distance, predictions, labels, one_hot=one_hot,
unindexed_classes=unindexed_classes)
示例11: average_surface_distance
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def average_surface_distance(predictions, labels, one_hot=False, unindexed_classes=0, spacing=[1, 1, 1]):
def one_class_average_surface_distance(pred, lab):
hausdorff_distance_filter = sitk.HausdorffDistanceImageFilter()
batch = pred.shape[0]
result = []
for i in range(batch):
pred_img = sitk.GetImageFromArray(pred[i].cpu().numpy())
pred_img.SetSpacing(spacing)
lab_img = sitk.GetImageFromArray(lab[i].cpu().numpy())
lab_img.SetSpacing(spacing)
hausdorff_distance_filter.Execute(pred_img, lab_img)
result.append(hausdorff_distance_filter.GetAverageHausdorffDistance())
return torch.tensor(np.asarray(result))
return multi_class_score(one_class_average_surface_distance, predictions, labels, one_hot=one_hot,
unindexed_classes=unindexed_classes)
示例12: zero_mean_unit_var
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def zero_mean_unit_var(image, mask=None, fill_value=0):
"""Normalizes an image to zero mean and unit variance."""
img_array = sitk.GetArrayFromImage(image)
img_array = img_array.astype(np.float32)
msk_array = np.ones(img_array.shape)
if mask is not None:
msk_array = sitk.GetArrayFromImage(mask)
mean = np.mean(img_array[msk_array>0])
std = np.std(img_array[msk_array>0])
if std > 0:
img_array = (img_array - mean) / std
img_array[msk_array==0] = fill_value
image_normalised = sitk.GetImageFromArray(img_array)
image_normalised.CopyInformation(image)
return image_normalised
示例13: range_matching
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def range_matching(image, mask=None, low_percentile=4, high_percentile=96, fill_value=0):
"""Normalizes an image by mapping the low_percentile to zero, and the high_percentile to one."""
img_array = sitk.GetArrayFromImage(image)
img_array = img_array.astype(np.float32)
msk_array = np.ones(img_array.shape)
if mask is not None:
msk_array = sitk.GetArrayFromImage(mask)
lo_p = np.percentile(img_array[msk_array>0], low_percentile)
hi_p = np.percentile(img_array[msk_array>0], high_percentile)
img_array = (img_array - lo_p) / (hi_p - lo_p)
img_array[msk_array == 0] = fill_value
image_normalised = sitk.GetImageFromArray(img_array)
image_normalised.CopyInformation(image)
return image_normalised
示例14: zero_one
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def zero_one(image, mask=None, fill_value=0):
"""Normalizes an image by mapping the min to zero, and max to one."""
img_array = sitk.GetArrayFromImage(image)
img_array = img_array.astype(np.float32)
msk_array = np.ones(img_array.shape)
if mask is not None:
msk_array = sitk.GetArrayFromImage(mask)
min_value = np.min(img_array[msk_array>0])
max_value = np.max(img_array[msk_array>0])
img_array = (img_array - min_value) / (max_value - min_value)
img_array[msk_array == 0] = fill_value
image_normalised = sitk.GetImageFromArray(img_array)
image_normalised.CopyInformation(image)
return image_normalised
示例15: saveImagesFromDM
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetImageFromArray [as 別名]
def saveImagesFromDM(dataMatrix, outputPrefix, referenceImName):
"""Save 3D images from data matrix."""
im_ref = sitk.ReadImage(referenceImName)
im_ref_array = sitk.GetArrayFromImage(im_ref) # get numpy array
z_dim, x_dim, y_dim = im_ref_array.shape # get 3D volume shape
num_of_data = dataMatrix.shape[1]
list_files = []
for i in range(num_of_data):
im = np.array(dataMatrix[:, i]).reshape(z_dim, x_dim, y_dim)
img = sitk.GetImageFromArray(im)
img.SetOrigin(im_ref.GetOrigin())
img.SetSpacing(im_ref.GetSpacing())
img.SetDirection(im_ref.GetDirection())
fn = outputPrefix + str(i) + '.nrrd'
list_files.append(fn)
sitk.WriteImage(img, fn, True)
del im_ref, im_ref_array
return list_files