本文整理匯總了Python中SimpleITK.GetArrayViewFromImage方法的典型用法代碼示例。如果您正苦於以下問題:Python SimpleITK.GetArrayViewFromImage方法的具體用法?Python SimpleITK.GetArrayViewFromImage怎麽用?Python SimpleITK.GetArrayViewFromImage使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類SimpleITK
的用法示例。
在下文中一共展示了SimpleITK.GetArrayViewFromImage方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: resample_images
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetArrayViewFromImage [as 別名]
def resample_images(
image: sitk.Image,
transforms: List[sitk.Euler3DTransform],
interpolation: Interpolation,
) -> List[sitk.Image]:
floating = reference = image
default_value = np.float64(sitk.GetArrayViewFromImage(image).min())
transforms = transforms[1:] # first is identity
images = [image] # first is identity
for transform in transforms:
resampler = sitk.ResampleImageFilter()
resampler.SetInterpolator(get_sitk_interpolator(interpolation))
resampler.SetReferenceImage(reference)
resampler.SetOutputPixelType(sitk.sitkFloat32)
resampler.SetDefaultPixelValue(default_value)
resampler.SetTransform(transform)
resampled = resampler.Execute(floating)
images.append(resampled)
return images
示例2: add_artifact
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetArrayViewFromImage [as 別名]
def add_artifact(
self,
image: sitk.Image,
transforms: List[sitk.Euler3DTransform],
times: np.ndarray,
interpolation: Interpolation,
):
images = self.resample_images(image, transforms, interpolation)
arrays = [sitk.GetArrayViewFromImage(im) for im in images]
arrays = [array.transpose() for array in arrays] # ITK to NumPy
spectra = [self.fourier_transform(array) for array in arrays]
self.sort_spectra(spectra, times)
result_spectrum = np.empty_like(spectra[0])
last_index = result_spectrum.shape[2]
indices = (last_index * times).astype(int).tolist()
indices.append(last_index)
ini = 0
for spectrum, fin in zip(spectra, indices):
result_spectrum[..., ini:fin] = spectrum[..., ini:fin]
ini = fin
result_image = np.real(self.inv_fourier_transform(result_spectrum))
return result_image.astype(np.float32)
示例3: add_artifact
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetArrayViewFromImage [as 別名]
def add_artifact(
self,
image: sitk.Image,
spikes_positions: np.ndarray,
intensity_factor: float,
):
array = sitk.GetArrayViewFromImage(image).transpose()
spectrum = self.fourier_transform(array)
shape = np.array(spectrum.shape)
mid_shape = shape // 2
indices = np.floor(spikes_positions * shape).astype(int)
for index in indices:
diff = index - mid_shape
i, j, k = mid_shape + diff
spectrum[i, j, k] = spectrum.max() * intensity_factor
# If we wanted to add a pure cosine, we should add spikes to both
# sides of k-space. However, having only one is a better
# representation og the actual cause of the artifact in real
# scans.
#i, j, k = mid_shape - diff
#spectrum[i, j, k] = spectrum.max() * intensity_factor
result = np.real(self.inv_fourier_transform(spectrum))
return result.astype(np.float32)
示例4: get_borders_mean
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetArrayViewFromImage [as 別名]
def get_borders_mean(image, filter_otsu=True):
# pylint: disable=bad-whitespace
array = sitk.GetArrayViewFromImage(image)
borders_tuple = (
array[ 0, :, :],
array[-1, :, :],
array[ :, 0, :],
array[ :, -1, :],
array[ :, :, 0],
array[ :, :, -1],
)
borders_flat = np.hstack([border.ravel() for border in borders_tuple])
if not filter_otsu:
return borders_flat.mean()
borders_reshaped = borders_flat.reshape(1, 1, -1)
borders_image = sitk.GetImageFromArray(borders_reshaped)
otsu = sitk.OtsuThresholdImageFilter()
otsu.Execute(borders_image)
threshold = otsu.GetThreshold()
values = borders_flat[borders_flat < threshold]
if values.any():
default_value = values.mean()
else:
default_value = borders_flat.mean()
return default_value
示例5: my_show
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetArrayViewFromImage [as 別名]
def my_show(*args):
for count, src in enumerate(args):
nda = sitk.GetArrayViewFromImage(src)
plt.subplot(1, len(args), count + 1)
plt.imshow(nda)
plt.show()
示例6: sitk_to_np_no_copy
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetArrayViewFromImage [as 別名]
def sitk_to_np_no_copy(image_sitk):
return sitk.GetArrayViewFromImage(image_sitk)
示例7: sitk_to_np
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetArrayViewFromImage [as 別名]
def sitk_to_np(image_sitk, type=None):
if type is None:
return sitk.GetArrayFromImage(image_sitk)
else:
return sitk.GetArrayViewFromImage(image_sitk).astype(type)
示例8: surface_distance
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetArrayViewFromImage [as 別名]
def surface_distance(label_image_0, label_image_1):
# code adapted from https://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/Python_html/34_Segmentation_Evaluation.html
try:
# calculate distances on label contours
reference_distance_map = sitk.SignedMaurerDistanceMap(label_image_1, squaredDistance=False, useImageSpacing=True)
reference_distance_map_arr = sitk.GetArrayViewFromImage(reference_distance_map)
reference_surface = sitk.LabelContour(label_image_1)
reference_surface_arr = sitk.GetArrayViewFromImage(reference_surface)
segmented_distance_map = sitk.SignedMaurerDistanceMap(label_image_0, squaredDistance=False, useImageSpacing=True)
segmented_distance_map_arr = sitk.GetArrayViewFromImage(segmented_distance_map)
segmented_surface = sitk.LabelContour(label_image_0)
segmented_surface_arr = sitk.GetArrayViewFromImage(segmented_surface)
seg2ref_distances = np.abs(reference_distance_map_arr[segmented_surface_arr == 1])
ref2seg_distances = np.abs(segmented_distance_map_arr[reference_surface_arr == 1])
all_surface_distances = np.concatenate([seg2ref_distances, ref2seg_distances])
# # Multiply the binary surface segmentations with the distance maps. The resulting distance
# # maps contain non-zero values only on the surface (they can also contain zero on the surface)
# seg2ref_distance_map = reference_distance_map * sitk.Cast(segmented_surface, sitk.sitkFloat32)
# ref2seg_distance_map = segmented_distance_map * sitk.Cast(reference_surface, sitk.sitkFloat32)
#
# statistics_image_filter = sitk.StatisticsImageFilter()
# # Get the number of pixels in the reference surface by counting all pixels that are 1.
# statistics_image_filter.Execute(reference_surface)
# num_reference_surface_pixels = int(statistics_image_filter.GetSum())
# # Get the number of pixels in the reference surface by counting all pixels that are 1.
# statistics_image_filter.Execute(segmented_surface)
# num_segmented_surface_pixels = int(statistics_image_filter.GetSum())
#
# # Get all non-zero distances and then add zero distances if required.
# seg2ref_distance_map_arr = sitk.GetArrayViewFromImage(seg2ref_distance_map)
# seg2ref_distances = list(seg2ref_distance_map_arr[seg2ref_distance_map_arr != 0])
# seg2ref_distances = seg2ref_distances + list(np.zeros(num_segmented_surface_pixels - len(seg2ref_distances)))
# ref2seg_distance_map_arr = sitk.GetArrayViewFromImage(ref2seg_distance_map)
# ref2seg_distances = list(ref2seg_distance_map_arr[ref2seg_distance_map_arr != 0])
# ref2seg_distances = ref2seg_distances + list(np.zeros(num_reference_surface_pixels - len(ref2seg_distances)))
#
# all_surface_distances = seg2ref_distances + ref2seg_distances
current_mean_surface_distance = np.mean(all_surface_distances)
current_median_surface_distance = np.median(all_surface_distances)
current_std_surface_distance = np.std(all_surface_distances)
current_max_surface_distance = np.max(all_surface_distances)
except:
current_mean_surface_distance = np.nan
current_median_surface_distance = np.nan
current_std_surface_distance = np.nan
current_max_surface_distance = np.nan
pass
return current_mean_surface_distance, current_median_surface_distance, current_std_surface_distance, current_max_surface_distance
示例9: to_itk_image
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import GetArrayViewFromImage [as 別名]
def to_itk_image(image_like):
if isinstance(image_like, itk.Image):
return image_like
if is_arraylike(image_like):
array = np.asarray(image_like)
case_use_view = array.flags['OWNDATA']
if have_dask and isinstance(image_like, dask.array.core.Array):
case_use_view = False
array = np.ascontiguousarray(array)
if case_use_view:
image_from_array = itk.image_view_from_array(array)
else:
image_from_array = itk.image_from_array(array)
return image_from_array
elif have_vtk and isinstance(image_like, vtk.vtkImageData):
from vtk.util import numpy_support as vtk_numpy_support
array = vtk_numpy_support.vtk_to_numpy(
image_like.GetPointData().GetScalars())
array.shape = tuple(image_like.GetDimensions())[::-1]
image_from_array = itk.image_view_from_array(array)
image_from_array.SetSpacing(image_like.GetSpacing())
image_from_array.SetOrigin(image_like.GetOrigin())
return image_from_array
elif have_simpleitk and isinstance(image_like, sitk.Image):
array = sitk.GetArrayViewFromImage(image_like)
image_from_array = itk.image_view_from_array(array)
image_from_array.SetSpacing(image_like.GetSpacing())
image_from_array.SetOrigin(image_like.GetOrigin())
direction = image_like.GetDirection()
npdirection = np.asarray(direction)
npdirection = np.reshape(npdirection, (-1, 3))
itkdirection = itk.matrix_from_array(npdirection)
image_from_array.SetDirection(itkdirection)
return image_from_array
elif have_imagej:
import imglyb
if isinstance(image_like,
imglyb.util.ReferenceGuardingRandomAccessibleInterval):
array = imglyb.to_numpy(image_like)
image_from_array = itk.image_view_from_array(array)
return image_from_array
elif isinstance(image_like, itk.ProcessObject):
return itk.output(image_like)
return None