當前位置: 首頁>>代碼示例>>Python>>正文


Python SimpleITK.Cast方法代碼示例

本文整理匯總了Python中SimpleITK.Cast方法的典型用法代碼示例。如果您正苦於以下問題:Python SimpleITK.Cast方法的具體用法?Python SimpleITK.Cast怎麽用?Python SimpleITK.Cast使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在SimpleITK的用法示例。


在下文中一共展示了SimpleITK.Cast方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: N4BiasFieldCorrection

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def N4BiasFieldCorrection(src_path, dst_path):
        '''
        This function carry out BiasFieldCorrection for the files in a specific directory
        :param src_path: path of the source file
        :param dst_path: path of the target file
        :return:
        '''
        print("N4 bias correction runs.")
        inputImage = sitk.ReadImage(src_path)

        maskImage = sitk.OtsuThreshold(inputImage, 0, 1, 200)
        sitk.WriteImage(maskImage, dst_path)

        inputImage = sitk.Cast(inputImage, sitk.sitkFloat32)

        corrector = sitk.N4BiasFieldCorrectionImageFilter()

        # corrector.SetMaximumNumberOfIterations(10)

        output = corrector.Execute(inputImage, maskImage)
        sitk.WriteImage(output, dst_path)
        print("Finished N4 Bias Field Correction.....")

    # normalize the data(zero mean and unit variance) 
開發者ID:JohnleeHIT,項目名稱:Brats2019,代碼行數:26,代碼來源:utils.py

示例2: get_stack_multiplied_with_mask

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def get_stack_multiplied_with_mask(self, filename=None, mask_sitk=None):

        if mask_sitk is None:
            mask_sitk = self.sitk_mask

        # Multiply stack with its mask
        image_sitk = self.sitk * \
            sitk.Cast(mask_sitk, self.sitk.GetPixelIDValue())

        if filename is None:
            filename = self.get_filename()

        return Stack.from_sitk_image(
            image_sitk=image_sitk,
            filename=filename,
            image_sitk_mask=mask_sitk,
            slice_thickness=self.get_slice_thickness(),
        )

    # Get stack resampled on isotropic grid based on the actual position of
    #  its slices
    #  \param[in] resolution length of voxel side, scalar
    #  \return isotropically, resampled stack as Stack object 
開發者ID:gift-surg,項目名稱:NiftyMIC,代碼行數:25,代碼來源:stack.py

示例3: write_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def write_image(
        image_sitk,
        path_to_file,
        compress=True,
        verbose=True,
        description=None,
    ):
        info = "Write image to %s" % path_to_file
        if compress:
            image_sitk = sitk.Cast(image_sitk, sitk.sitkFloat32)
            info += " (float32)"
        if verbose:
            ph.print_info("%s ... " % info, newline=False)
        header_update = DataWriter._get_header_update(description=description)

        sitkh.write_nifti_image_sitk(
            image_sitk, path_to_file, header_update=header_update)
        if verbose:
            print("done") 
開發者ID:gift-surg,項目名稱:NiftyMIC,代碼行數:21,代碼來源:data_writer.py

示例4: write_mask

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def write_mask(
        mask_sitk,
        path_to_file,
        compress=True,
        verbose=True,
        description=None,
    ):
        info = "Write mask to %s" % path_to_file
        if compress:
            mask_sitk = sitk.Cast(mask_sitk, sitk.sitkUInt8)
            info += " (uint8)"
        if verbose:
            ph.print_info("%s ... " % info, newline=False)
        header_update = DataWriter._get_header_update(description=description)

        sitkh.write_nifti_image_sitk(
            mask_sitk, path_to_file, header_update=header_update)
        if verbose:
            print("done") 
開發者ID:gift-surg,項目名稱:NiftyMIC,代碼行數:21,代碼來源:data_writer.py

示例5: itkRegionGrow

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def itkRegionGrow(im_arr, type_str, seedlist, lower=0, upper=1):

    func_1 = 'CT'
    func_2 = 'CC'

    # get an image from the array input
    image = itkEdgePreservedSmoothing.itkEdgePreservedSmoothing(im_arr, 'CF')
    image = sitk.GetImageFromArray(im_arr)
    image = sitk.Cast(image, sitk.sitkFloat32)

    # find out the way to process the image according to type_str
    if type_str == func_1:
        im_new = sitk.ConnectedThreshold(image, seedlist, lower, upper)

    elif type_str == func_2:
        im_new = sitk.ConfidenceConnected(image, seedlist)

    else:
        print('Please check your spelling,'
              'and try again.')
    return im_new


# an example of using the function 
開發者ID:DlutMedimgGroup,項目名稱:MedImg_Py_Library,代碼行數:26,代碼來源:itkRegionGrow.py

示例6: normalize_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def normalize_image(image,
                    valid_min=-1024,
                    valid_max=3071):
    image = sitk.Cast(image, sitk.sitkFloat32)
    f_min_max = sitk.MinimumMaximumImageFilter()
    f_min_max.Execute(image)
    min_ = f_min_max.GetMinimum()
    max_ = f_min_max.GetMaximum()
    log.debug(f'Got image with value range [{min_}, {max_}]')
    if min_ < valid_min or max_ > valid_max:
        log.warning(
            f'Got image with non-default hounsfield scale range: Got range ' \
            f'[{min_}, {max_}]. Values will be clipped to [{valid_min}, {valid_max}].'
        )
        f_clamp = sitk.ClampImageFilter()
        f_clamp.SetLowerBound(valid_min)
        f_clamp.SetUpperBound(valid_max)
        image = f_clamp.Execute(image)

    f_subtract = sitk.SubtractImageFilter()
    image = f_subtract.Execute(image, valid_min)
    f_divide = sitk.DivideImageFilter()

    return f_divide.Execute(image, valid_max - valid_min) 
開發者ID:IPMI-ICNS-UKE,項目名稱:gdl-fire-4d,代碼行數:26,代碼來源:preprocessing.py

示例7: load_itk

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def load_itk(filename):
    """
    load mhd files and normalization 0-255
    :param filename:
    :return:
    """
    rescalFilt = sitk.RescaleIntensityImageFilter()
    rescalFilt.SetOutputMaximum(255)
    rescalFilt.SetOutputMinimum(0)
    # Reads the image using SimpleITK
    itkimage = rescalFilt.Execute(sitk.Cast(sitk.ReadImage(filename), sitk.sitkFloat32))
    return itkimage 
開發者ID:junqiangchen,項目名稱:LiTS---Liver-Tumor-Segmentation-Challenge,代碼行數:14,代碼來源:getPatchImageAndMask.py

示例8: loadImages

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def loadImages(self):
        self.sitkImages=dict()
        rescalFilt=sitk.RescaleIntensityImageFilter()
        rescalFilt.SetOutputMaximum(1)
        rescalFilt.SetOutputMinimum(0)

        stats = sitk.StatisticsImageFilter()
        m = 0.
        for f in self.fileList:
            self.sitkImages[f]=rescalFilt.Execute(sitk.Cast(sitk.ReadImage(join(self.srcFolder, f)),sitk.sitkFloat32))
            stats.Execute(self.sitkImages[f])
            m += stats.GetMean()

        self.meanIntensityTrain=m/len(self.sitkImages) 
開發者ID:faustomilletari,項目名稱:VNet,代碼行數:16,代碼來源:DataManager.py

示例9: loadGT

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def loadGT(self):
        self.sitkGT=dict()

        for f in self.gtList:
            self.sitkGT[f]=sitk.Cast(sitk.ReadImage(join(self.srcFolder, f))>0.5,sitk.sitkFloat32) 
開發者ID:faustomilletari,項目名稱:VNet,代碼行數:7,代碼來源:DataManager.py

示例10: write_dicom

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def write_dicom(self):
        self.dicom_dir = self.dir / 'dicom'
        self.dicom_dir.mkdir(exist_ok=True)
        self.dicom_path = self.dicom_dir / 'dicom.dcm'
        self.nii_path = self.get_image_path('read_image')
        writer = sitk.ImageFileWriter()
        writer.SetFileName(str(self.dicom_path))
        image = sitk.ReadImage(str(self.nii_path))
        image = sitk.Cast(image, sitk.sitkUInt16)
        image = image[0]  # dicom reader supports 2D only
        writer.Execute(image) 
開發者ID:fepegar,項目名稱:torchio,代碼行數:13,代碼來源:test_io.py

示例11: getLesionDetection

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def getLesionDetection(testImage, resultImage):    
    """Lesion detection metrics, both recall and F1."""
    
    # Connected components will give the background label 0, so subtract 1 from all results
    ccFilter = sitk.ConnectedComponentImageFilter()    
    ccFilter.SetFullyConnected(True)
    
    # Connected components on the test image, to determine the number of true WMH.
    # And to get the overlap between detected voxels and true WMH
    ccTest = ccFilter.Execute(testImage)    
    lResult = sitk.Multiply(ccTest, sitk.Cast(resultImage, sitk.sitkUInt32))
    
    ccTestArray = sitk.GetArrayFromImage(ccTest)
    lResultArray = sitk.GetArrayFromImage(lResult)
    
    # recall = (number of detected WMH) / (number of true WMH)
    recall = float(len(np.unique(lResultArray)) - 1) / (len(np.unique(ccTestArray)) - 1)
    
    # Connected components of results, to determine number of detected lesions
    ccResult = ccFilter.Execute(resultImage)
    ccResultArray = sitk.GetArrayFromImage(ccResult)
    
    # precision = (number of detected WMH) / (number of all detections)
    precision = float(len(np.unique(lResultArray)) - 1) / float(len(np.unique(ccResultArray)) - 1)
    
    f1 = 2.0 * (precision * recall) / (precision + recall)
    
    return recall, f1 
開發者ID:hongweilibran,項目名稱:wmh_ibbmTum,代碼行數:30,代碼來源:evaluation.py

示例12: run

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def run(self):

        # create zero image
        coverage_sitk = sitk.Image(self._reconstruction_sitk) * 0

        for i, stack in enumerate(self._stacks):
            print("Slices of stack %d/%d ... " % (i + 1, len(self._stacks)))

            # Add each individual slice contribution
            for slice in stack.get_slices():
                coverage_sitk = self._add_slice_contribution(
                    slice, coverage_sitk)

        # Cast to unsigned integer
        self._coverage_sitk = sitk.Cast(coverage_sitk, sitk.sitkUInt8)

    ##
    # Adds a slice contribution.
    # \date       2019-02-23 21:27:12+0000
    #
    # \param      slice          Slice as sl.Slice object
    # \param      coverage_sitk  sitk.Image reflecting the current iteration of
    #                            slice coverage
    #
    # \return     Updated slice contribution, sitk.Image
    # 
開發者ID:gift-surg,項目名稱:NiftyMIC,代碼行數:28,代碼來源:slice_coverage.py

示例13: _get_masked_image_slice

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def _get_masked_image_slice(slice):
        slice_sitk = slice.sitk * \
            sitk.Cast(slice.sitk_mask, slice.sitk.GetPixelIDValue())
        return slice_sitk 
開發者ID:gift-surg,項目名稱:NiftyMIC,代碼行數:6,代碼來源:scattered_data_approximation.py

示例14: resample_image

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def resample_image(image, out_spacing=(1.0, 1.0, 1.0), out_size=None, is_label=False, pad_value=0):
    """Resamples an image to given element spacing and output size."""

    original_spacing = np.array(image.GetSpacing())
    original_size = np.array(image.GetSize())

    if out_size is None:
        out_size = np.round(np.array(original_size * original_spacing / np.array(out_spacing))).astype(int)
    else:
        out_size = np.array(out_size)

    original_direction = np.array(image.GetDirection()).reshape(len(original_spacing),-1)
    original_center = (np.array(original_size, dtype=float) - 1.0) / 2.0 * original_spacing
    out_center = (np.array(out_size, dtype=float) - 1.0) / 2.0 * np.array(out_spacing)

    original_center = np.matmul(original_direction, original_center)
    out_center = np.matmul(original_direction, out_center)
    out_origin = np.array(image.GetOrigin()) + (original_center - out_center)

    resample = sitk.ResampleImageFilter()
    resample.SetOutputSpacing(out_spacing)
    resample.SetSize(out_size.tolist())
    resample.SetOutputDirection(image.GetDirection())
    resample.SetOutputOrigin(out_origin.tolist())
    resample.SetTransform(sitk.Transform())
    resample.SetDefaultPixelValue(pad_value)

    if is_label:
        resample.SetInterpolator(sitk.sitkNearestNeighbor)
    else:
        #resample.SetInterpolator(sitk.sitkBSpline)
        resample.SetInterpolator(sitk.sitkLinear)

    return resample.Execute(sitk.Cast(image, sitk.sitkFloat32)) 
開發者ID:biomedia-mira,項目名稱:istn,代碼行數:36,代碼來源:processing.py

示例15: write_data

# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import Cast [as 別名]
def write_data(self):

        if self._filename is None:
            raise ValueError("Filename is not set")

        ph.create_directory(os.path.dirname(self._filename))
        header_update = DataWriter._get_header_update(
            description=self._description)

        info = "Write image to '%s'" % self._filename
        vector_image_sitk = sitkh.get_sitk_vector_image_from_components(
            [stack.sitk for stack in self._stacks])
        if self._compress:
            if not "integer" in vector_image_sitk.GetPixelIDTypeAsString():
                vector_image_sitk = sitk.Cast(
                    vector_image_sitk, sitk.sitkVectorFloat32)
                info += " (float32)"

        ph.print_info("%s ... " % info, newline=False)
        sitkh.write_sitk_vector_image(
            vector_image_sitk,
            self._filename,
            verbose=False,
            header_update=header_update,
        )
        print("done")

        if self._write_mask:
            info = "Write image mask to '%s'" % self._filename
            filename_split = (self._filename).split(".")
            filename = filename_split[0]
            filename += self._suffix_mask + "." + \
                (".").join(filename_split[1:])
            vector_image_sitk = sitkh.get_sitk_vector_image_from_components(
                [stack.sitk_mask for stack in self._stacks])

            if self._compress:
                vector_image_sitk = sitk.Cast(
                    vector_image_sitk, sitk.sitkVectorUInt8)
                info += " (uint8)"
            ph.print_info("%s ... " % info, newline=False)
            sitkh.write_sitk_vector_image(
                vector_image_sitk,
                filename,
                verbose=False,
                header_update=header_update,
            )
            print("done") 
開發者ID:gift-surg,項目名稱:NiftyMIC,代碼行數:50,代碼來源:data_writer.py


注:本文中的SimpleITK.Cast方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。