本文整理匯總了Python中SimpleITK.AffineTransform方法的典型用法代碼示例。如果您正苦於以下問題:Python SimpleITK.AffineTransform方法的具體用法?Python SimpleITK.AffineTransform怎麽用?Python SimpleITK.AffineTransform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類SimpleITK
的用法示例。
在下文中一共展示了SimpleITK.AffineTransform方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_flip_transform
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def get_flip_transform(dim, flip_axes):
"""
Returns the sitk transform based on the given parameters.
:param dim: The dimension.
:param flip_axes: List of flip indizes for each dimension. A True entry indicates a dimension to flip.
:return: The sitk.AffineTransform().
"""
assert len(flip_axes) == dim, 'flip_axes must have length that is equal to dimension.'
# a flip is implemented by scaling the image axis by -1.0
scale_factors = [-1.0 if f else 1.0 for f in flip_axes]
t = sitk.AffineTransform(dim)
t.Scale(scale_factors)
return t
示例2: get
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def get(self, **kwargs):
"""
Returns the sitk transform based on the given parameters.
:param kwargs: Must contain either 'image', or 'input_size' and 'input_spacing', which define the input image physical space.
:return: The sitk.AffineTransform().
"""
input_size, input_spacing, _, _ = self.get_image_size_spacing_direction_origin(**kwargs)
current_scale = []
for i in range(self.dim):
if self.output_size[i] is None or self.output_spacing[i] is None:
continue
else:
current_scale.append((input_size[i] * input_spacing[i]) / (self.output_size[i] * self.output_spacing[i]))
max_scale = max(current_scale)
current_scale = []
for i in range(self.dim):
if i in self.ignore_dim:
current_scale.append(1.0)
else:
current_scale.append(max_scale)
return self.get_scale_transform(self.dim, current_scale)
示例3: get
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def get(self, **kwargs):
"""
Returns the sitk transform based on the given parameters.
:param kwargs: Not used.
:return: The sitk.AffineTransform().
"""
if self.dim == 2:
self.current_angles = [float_uniform(-self.random_angles[0], self.random_angles[0])]
elif self.dim == 3:
# rotate by same random angle in each dimension
if len(self.random_angles) == 1:
angle = float_uniform(-self.random_angles[0], self.random_angles[0])
self.current_angles = [angle] * self.dim
else:
# rotate by individual angle in each dimension
self.current_angles = [float_uniform(-self.random_angles[i], self.random_angles[i])
for i in range(self.dim)]
return self.get_rotation_transform(self.dim, self.current_angles)
示例4: _matrix_to_itk_transform
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def _matrix_to_itk_transform(matrix, dimensions=3):
matrix = _to_itk_convention(matrix)
rotation = matrix[:dimensions, :dimensions].ravel().tolist()
translation = matrix[:dimensions, 3].tolist()
transform = sitk.AffineTransform(rotation, translation)
return transform
示例5: get_filename
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def get_filename(self):
return self._filename
# Get history history of affine transforms, i.e. encoded spatial
# position+orientation of slice, and rigid motion estimates of slice
# obtained in the course of the registration/reconstruction process
# \return list of sitk.AffineTransform and sitk.Euler3DTransform objects
示例6: __init__
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def __init__(self):
DataReader.__init__(self)
self._transforms_sitk = None
# Third line in *.tfm file contains information on the transform type
self._transform_type = {
"Euler3DTransform_double_3_3": sitk.Euler3DTransform,
"AffineTransform_double_3_3": sitk.AffineTransform,
}
示例7: get_directory
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def get_directory(self):
return self._dir_input
# Get current affine transformation defining the spatial position in
# physical space of slice
# \return affine transformation, sitk.AffineTransform object
示例8: _get_TPP_transform
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def _get_TPP_transform(self, slice_sitk):
origin_3D_sitk = np.array(slice_sitk.GetOrigin())
direction_3D_sitk = np.array(slice_sitk.GetDirection())
T_PP = sitk.AffineTransform(3)
T_PP.SetMatrix(direction_3D_sitk)
T_PP.SetTranslation(origin_3D_sitk)
T_PP = sitk.AffineTransform(T_PP.GetInverse())
return T_PP
示例9: _new_affine_transform_sitk
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def _new_affine_transform_sitk(self):
return sitk.AffineTransform(2)
示例10: _new_affine_transform_itk
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def _new_affine_transform_itk(self):
return itk.AffineTransform.D2.New()
##
# Perform motion correction based on performed registration to get motion
# corrected stack and associated slice transforms.
# \date 2016-11-21 20:11:53+0000
#
# \param self The object
# \post self._stack_corrected updated
# \post self._slice_transforms_sitk updated
#
示例11: _run
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def _run(self):
ph.print_title("Volume-to-Volume Registration")
for i in range(0, len(self._stacks)):
txt = "Volume-to-Volume Registration -- " \
"Stack %d/%d" % (i + 1, len(self._stacks))
if self._verbose:
ph.print_subtitle(txt)
else:
ph.print_info(txt)
if self._robust:
transform_initializer = tinit.TransformInitializer(
fixed=self._reference,
moving=self._stacks[i],
similarity_measure="NCC",
refine_pca_initializations=True,
)
transform_initializer.run()
transform_sitk = transform_initializer.get_transform_sitk()
transform_sitk = sitk.AffineTransform(
transform_sitk.GetInverse())
else:
self._registration_method.set_moving(self._reference)
self._registration_method.set_fixed(self._stacks[i])
self._registration_method.run()
transform_sitk = self._registration_method.get_registration_transform_sitk()
# Update position of stack
self._stacks[i].update_motion_correction(transform_sitk)
##
# Class to perform Slice-To-Volume registration
# \date 2017-08-08 02:30:03+0100
#
示例12: get
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def get(self, **kwargs):
"""
Returns the sitk transform based on the given parameters.
:param kwargs: Not used.
:return: The sitk.AffineTransform().
"""
return self.get_flip_transform(self.dim, self.current_flip_axes)
示例13: get_translate_transform
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def get_translate_transform(self, dim, offset):
"""
Returns the sitk transform based on the given parameters.
:param dim: The dimension.
:param offset: List of offsets for each dimension.
:return: The sitk.AffineTransform().
"""
assert len(offset) == dim, 'Length of offset must be equal to dim.'
t = sitk.AffineTransform(dim)
offset_with_used_dimensions_only = [o if used else 0 for used, o in zip(self.used_dimensions, offset)]
t.Translate(offset_with_used_dimensions_only)
return t
示例14: get
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def get(self, **kwargs):
"""
Returns the sitk transform based on the given parameters.
:param kwargs: Not used.
:return: The sitk.AffineTransform().
"""
return self.get_translate_transform(self.dim, self.current_offset)
示例15: get_input_center
# 需要導入模塊: import SimpleITK [as 別名]
# 或者: from SimpleITK import AffineTransform [as 別名]
def get_input_center(self, **kwargs):
"""
Returns the input center based on either the parameters defined by the initializer or by **kwargs.
The function uses the result of self.get_image_size_spacing_direction_origin(**kwargs) to define the output_center for each entry of output_size and output_spacing that is None.
:param kwargs: Must contain either 'image', or 'input_size' and 'input_spacing', which define the input image physical space.
:return: The sitk.AffineTransform().
"""
input_size, input_spacing, input_direction, input_origin = self.get_image_size_spacing_direction_origin(**kwargs)
# -1 is important, as it is always the center pixel.
input_size_half = [(input_size[i] - 1) * 0.5 for i in range(self.dim)]
return self.index_to_physical_point(input_size_half, input_origin, input_spacing, input_direction)