本文整理匯總了Python中PIL.Image.blend方法的典型用法代碼示例。如果您正苦於以下問題:Python Image.blend方法的具體用法?Python Image.blend怎麽用?Python Image.blend使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類PIL.Image
的用法示例。
在下文中一共展示了Image.blend方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __call__
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def __call__(self, img_dict):
if np.random.rand() < self.p:
data_get_func = img_dict['meta']['get_item_func']
curr_idx = img_dict['meta']['idx']
max_idx = img_dict['meta']['max_idx']
other_idx = np.random.randint(0, max_idx)
data4augm = data_get_func(other_idx)
while (curr_idx == other_idx) or (self.same_label and data4augm['label'] != img_dict['label']):
other_idx = np.random.randint(0, max_idx)
data4augm = data_get_func(other_idx)
alpha = np.random.rand()
keys = ['rgb', 'depth', 'ir']
for key in keys:
img_dict[key] = Image.blend(data4augm[key].resize(img_dict[key].size),
img_dict[key],
alpha=alpha)
if not self.same_label:
img_dict['label'] = alpha * img_dict['label'] + (1 - alpha) * data4augm['label']
return img_dict
示例2: _apply_basic
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def _apply_basic(self, img, mixing_weights, m):
# This is a literal adaptation of the paper/official implementation without normalizations and
# PIL <-> Numpy conversions between every op. It is still quite CPU compute heavy compared to the
# typical augmentation transforms, could use a GPU / Kornia implementation.
img_shape = img.size[0], img.size[1], len(img.getbands())
mixed = np.zeros(img_shape, dtype=np.float32)
for mw in mixing_weights:
depth = self.depth if self.depth > 0 else np.random.randint(1, 4)
ops = np.random.choice(self.ops, depth, replace=True)
img_aug = img # no ops are in-place, deep copy not necessary
for op in ops:
img_aug = op(img_aug)
mixed += mw * np.asarray(img_aug, dtype=np.float32)
np.clip(mixed, 0, 255., out=mixed)
mixed = Image.fromarray(mixed.astype(np.uint8))
return Image.blend(img, mixed, m)
示例3: blend_images_np
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def blend_images_np(image, image2, alpha=0.5):
"""Draws image2 on an image.
Args:
image: uint8 numpy array with shape (img_height, img_height, 3)
image2: a uint8 numpy array of shape (img_height, img_height) with
values between either 0 or 1.
color: color to draw the keypoints with. Default is red.
alpha: transparency value between 0 and 1. (default: 0.4)
Raises:
ValueError: On incorrect data type for image or image2s.
"""
if image.dtype != np.uint8:
raise ValueError('`image` not of type np.uint8')
if image2.dtype != np.uint8:
raise ValueError('`image2` not of type np.uint8')
if image.shape[:2] != image2.shape[:2]:
raise ValueError('The image has spatial dimensions %s but the image2 has '
'dimensions %s' % (image.shape[:2], image2.shape[:2]))
pil_image = Image.fromarray(image)
pil_image2 = Image.fromarray(image2)
pil_image = Image.blend(pil_image, pil_image2, alpha)
np.copyto(image, np.array(pil_image.convert('RGB')))
return image
示例4: blend_images_np
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def blend_images_np(image, image2, alpha=0.5):
"""Draws image2 on an image.
Args:
image: uint8 numpy array with shape (img_height, img_height, 3)
image2: a uint8 numpy array of shape (img_height, img_height) with
values between either 0 or 1.
color: color to draw the keypoints with. Default is red.
alpha: transparency value between 0 and 1. (default: 0.4)
Raises:
ValueError: On incorrect data type for image or image2s.
"""
if image.dtype != np.uint8:
raise ValueError('`image` not of type np.uint8')
if image2.dtype != np.uint8:
raise ValueError('`image2` not of type np.uint8')
if image.shape[:2] != image2.shape:
raise ValueError('The image has spatial dimensions %s but the image2 has '
'dimensions %s' % (image.shape[:2], image2.shape))
pil_image = Image.fromarray(image)
pil_image2 = Image.fromarray(image2)
pil_image = Image.blend(pil_image, pil_image2, alpha)
np.copyto(image, np.array(pil_image.convert('RGB')))
return image
示例5: _eval_prediction
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def _eval_prediction(self, eval_source, eval_target, seg_predictions, threshold=-1.0):
self.sess.run([self.placeholder_init_op],
feed_dict={self.image_placeholder: eval_source, self.training_mode: False})
score_predictions, seg_predictions = self.sess.run([self.score_predictions, seg_predictions])
print('Predicted score is {}'.format(score_predictions[0]))
eval_image = io.imread(eval_source)
mask = np.where(seg_predictions[0] > threshold, 255, 0)
mask = np.expand_dims(mask, axis=2).astype(np.uint8)
mask = cv2.resize(mask, (eval_image.shape[1], eval_image.shape[0]))
mask = Image.fromarray(mask)
mask = mask.convert('RGB')
eval_image = Image.fromarray(eval_image)
eval_image = eval_image.convert('RGB')
target_img = Image.blend(eval_image, mask, 0.5)
target_img.save(eval_target)
print('Image with the mask applied stored at {}'.format(eval_target))
示例6: save_prediction_image
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def save_prediction_image(_, panoptic_pred, img_info, out_dir, colors, num_stuff):
msk, cat, obj, iscrowd = panoptic_pred
img = Image.open(img_info["abs_path"])
# Prepare folders and paths
folder, img_name = path.split(img_info["rel_path"])
img_name, _ = path.splitext(img_name)
out_dir = path.join(out_dir, folder)
ensure_dir(out_dir)
out_path = path.join(out_dir, img_name + ".jpg")
# Render semantic
sem = cat[msk].numpy()
crowd = iscrowd[msk].numpy()
sem[crowd == 1] = 255
sem_img = Image.fromarray(colors[sem])
sem_img = sem_img.resize(img_info["original_size"][::-1])
# Render contours
is_background = (sem < num_stuff) | (sem == 255)
msk = msk.numpy()
msk[is_background] = 0
contours = find_boundaries(msk, mode="outer", background=0).astype(np.uint8) * 255
contours = dilation(contours)
contours = np.expand_dims(contours, -1).repeat(4, -1)
contours_img = Image.fromarray(contours, mode="RGBA")
contours_img = contours_img.resize(img_info["original_size"][::-1])
# Compose final image and save
out = Image.blend(img, sem_img, 0.5).convert(mode="RGBA")
out = Image.alpha_composite(out, contours_img)
out.convert(mode="RGB").save(out_path)
示例7: draw_boxes_with_label_and_scores
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def draw_boxes_with_label_and_scores(img_array, boxes, labels, scores):
img_array = img_array + np.array(cfgs.PIXEL_MEAN)
img_array.astype(np.float32)
boxes = boxes.astype(np.int64)
labels = labels.astype(np.int32)
img_array = np.array(img_array * 255 / np.max(img_array), dtype=np.uint8)
img_obj = Image.fromarray(img_array)
raw_img_obj = img_obj.copy()
draw_obj = ImageDraw.Draw(img_obj)
num_of_objs = 0
for box, a_label, a_score in zip(boxes, labels, scores):
if a_label != NOT_DRAW_BOXES:
num_of_objs += 1
draw_a_rectangel_in_img(draw_obj, box, color=STANDARD_COLORS[a_label], width=3)
if a_label == ONLY_DRAW_BOXES: # -1
continue
elif a_label == ONLY_DRAW_BOXES_WITH_SCORES: # -2
only_draw_scores(draw_obj, box, a_score, color='White')
continue
else:
draw_label_with_scores(draw_obj, box, a_label, a_score, color='White')
out_img_obj = Image.blend(raw_img_obj, img_obj, alpha=0.7)
return np.array(out_img_obj)
示例8: draw_boxes_with_label_and_scores
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def draw_boxes_with_label_and_scores(img_array, boxes, labels, scores, method, is_csl=False, in_graph=True):
if in_graph:
if cfgs.NET_NAME in ['resnet152_v1d', 'resnet101_v1d', 'resnet50_v1d']:
img_array = (img_array * np.array(cfgs.PIXEL_STD) + np.array(cfgs.PIXEL_MEAN_)) * 255
else:
img_array = img_array + np.array(cfgs.PIXEL_MEAN)
img_array.astype(np.float32)
boxes = boxes.astype(np.int64)
labels = labels.astype(np.int32)
img_array = np.array(img_array * 255 / np.max(img_array), dtype=np.uint8)
img_obj = Image.fromarray(img_array)
raw_img_obj = img_obj.copy()
draw_obj = ImageDraw.Draw(img_obj)
num_of_objs = 0
for box, a_label, a_score in zip(boxes, labels, scores):
if a_label != NOT_DRAW_BOXES:
num_of_objs += 1
draw_a_rectangel_in_img(draw_obj, box, color=STANDARD_COLORS[a_label], width=3, method=method)
if a_label == ONLY_DRAW_BOXES: # -1
continue
elif a_label == ONLY_DRAW_BOXES_WITH_SCORES: # -2
only_draw_scores(draw_obj, box, a_score, color='White')
else:
if is_csl:
draw_label_with_scores_csl(draw_obj, box, a_label, a_score, color='White')
else:
draw_label_with_scores(draw_obj, box, a_label, a_score, color='White')
out_img_obj = Image.blend(raw_img_obj, img_obj, alpha=0.7)
return np.array(out_img_obj)
示例9: draw_boxes
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def draw_boxes(img_array, boxes, labels, scores, color, method, is_csl=False, in_graph=True):
if in_graph:
if cfgs.NET_NAME in ['resnet152_v1d', 'resnet101_v1d', 'resnet50_v1d']:
img_array = (img_array * np.array(cfgs.PIXEL_STD) + np.array(cfgs.PIXEL_MEAN_)) * 255
else:
img_array = img_array + np.array(cfgs.PIXEL_MEAN)
img_array.astype(np.float32)
boxes = boxes.astype(np.int64)
labels = labels.astype(np.int32)
img_array = np.array(img_array * 255 / np.max(img_array), dtype=np.uint8)
img_obj = Image.fromarray(img_array)
raw_img_obj = img_obj.copy()
draw_obj = ImageDraw.Draw(img_obj)
num_of_objs = 0
for box, a_label, a_score in zip(boxes, labels, scores):
if a_label != NOT_DRAW_BOXES:
num_of_objs += 1
draw_a_rectangel_in_img(draw_obj, box, color=color, width=3, method=method)
# draw_a_rectangel_in_img(draw_obj, box, color=STANDARD_COLORS[1], width=3, method=method)
if a_label == ONLY_DRAW_BOXES: # -1
continue
elif a_label == ONLY_DRAW_BOXES_WITH_SCORES: # -2
only_draw_scores(draw_obj, box, a_score, color='White')
else:
if is_csl:
draw_label_with_scores_csl(draw_obj, box, a_label, a_score, color='White')
else:
draw_label_with_scores(draw_obj, box, a_label, a_score, color='White')
out_img_obj = Image.blend(raw_img_obj, img_obj, alpha=0.7)
return np.array(out_img_obj)
示例10: mask_image
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def mask_image(img, mask, opacity=1.00, bg=False):
"""
- img (PIL)
- mask (PIL)
- opacity (float) (default: 1.00)
Returns a PIL image.
"""
blank = Image.new('RGB', img.size, color=0)
if bg:
masked_image = Image.composite(blank, img, mask)
else:
masked_image = Image.composite(img, blank, mask)
if opacity < 1:
masked_image = Image.blend(img, masked_image, opacity)
return masked_image
示例11: Blend_TwoImages
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def Blend_TwoImages(image1,image2, ratio=0.5):
# Load up the first and second demo images
# image1 = Image.open("demo3_1.jpg")
# image2 = Image.open("demo3_2.jpg")
if (None==image1) or (None==image2): return
# Create a new image which is the half-way blend of image1 and image2
# The "0.5" parameter denotes the half-way point of the blend function.
images1And2 = Image.blend(image1, image2, ratio)
# Save the resulting blend as a file
# images1And2.save("demo3_3.jpg")
return images1And2
示例12: draw_boxes_with_label_and_scores
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def draw_boxes_with_label_and_scores(img_array, boxes, labels, scores, method, in_graph=True):
if in_graph:
if cfgs.NET_NAME in ['resnet152_v1d', 'resnet101_v1d', 'resnet50_v1d']:
img_array = (img_array * np.array(cfgs.PIXEL_STD) + np.array(cfgs.PIXEL_MEAN_)) * 255
else:
img_array = img_array + np.array(cfgs.PIXEL_MEAN)
img_array.astype(np.float32)
boxes = boxes.astype(np.int64)
labels = labels.astype(np.int32)
img_array = np.array(img_array * 255 / np.max(img_array), dtype=np.uint8)
img_obj = Image.fromarray(img_array)
raw_img_obj = img_obj.copy()
draw_obj = ImageDraw.Draw(img_obj)
num_of_objs = 0
for box, a_label, a_score in zip(boxes, labels, scores):
if a_label != NOT_DRAW_BOXES:
num_of_objs += 1
draw_a_rectangel_in_img(draw_obj, box, color=STANDARD_COLORS[a_label], width=3, method=method)
if a_label == ONLY_DRAW_BOXES: # -1
continue
elif a_label == ONLY_DRAW_BOXES_WITH_SCORES: # -2
only_draw_scores(draw_obj, box, a_score, color='White')
continue
else:
draw_label_with_scores(draw_obj, box, a_label, a_score, color='White')
out_img_obj = Image.blend(raw_img_obj, img_obj, alpha=0.7)
return np.array(out_img_obj)
示例13: draw_boxes
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def draw_boxes(img_array, boxes, labels, scores, color, method, in_graph=True):
if in_graph:
if cfgs.NET_NAME in ['resnet152_v1d', 'resnet101_v1d', 'resnet50_v1d']:
img_array = (img_array * np.array(cfgs.PIXEL_STD) + np.array(cfgs.PIXEL_MEAN_)) * 255
else:
img_array = img_array + np.array(cfgs.PIXEL_MEAN)
img_array.astype(np.float32)
boxes = boxes.astype(np.int64)
labels = labels.astype(np.int32)
img_array = np.array(img_array * 255 / np.max(img_array), dtype=np.uint8)
img_obj = Image.fromarray(img_array)
raw_img_obj = img_obj.copy()
draw_obj = ImageDraw.Draw(img_obj)
num_of_objs = 0
for box, a_label, a_score in zip(boxes, labels, scores):
if a_label != NOT_DRAW_BOXES:
num_of_objs += 1
draw_a_rectangel_in_img(draw_obj, box, color=color, width=3, method=method)
# draw_a_rectangel_in_img(draw_obj, box, color=STANDARD_COLORS[1], width=3, method=method)
if a_label == ONLY_DRAW_BOXES: # -1
continue
elif a_label == ONLY_DRAW_BOXES_WITH_SCORES: # -2
only_draw_scores(draw_obj, box, a_score, color='White')
continue
else:
draw_label_with_scores(draw_obj, box, a_label, a_score, color='White')
out_img_obj = Image.blend(raw_img_obj, img_obj, alpha=0.7)
return np.array(out_img_obj)
示例14: _enhance_increasing_level_to_arg
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def _enhance_increasing_level_to_arg(level, _hparams):
# the 'no change' level is 1.0, moving away from that towards 0. or 2.0 increases the enhancement blend
# range [0.1, 1.9]
level = (level / _MAX_LEVEL) * .9
level = 1.0 + _randomly_negate(level)
return level,
示例15: _apply_blended
# 需要導入模塊: from PIL import Image [as 別名]
# 或者: from PIL.Image import blend [as 別名]
def _apply_blended(self, img, mixing_weights, m):
# This is my first crack and implementing a slightly faster mixed augmentation. Instead
# of accumulating the mix for each chain in a Numpy array and then blending with original,
# it recomputes the blending coefficients and applies one PIL image blend per chain.
# TODO the results appear in the right ballpark but they differ by more than rounding.
img_orig = img.copy()
ws = self._calc_blended_weights(mixing_weights, m)
for w in ws:
depth = self.depth if self.depth > 0 else np.random.randint(1, 4)
ops = np.random.choice(self.ops, depth, replace=True)
img_aug = img_orig # no ops are in-place, deep copy not necessary
for op in ops:
img_aug = op(img_aug)
img = Image.blend(img, img_aug, w)
return img