本文整理匯總了Python中Model.Model方法的典型用法代碼示例。如果您正苦於以下問題:Python Model.Model方法的具體用法?Python Model.Model怎麽用?Python Model.Model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Model
的用法示例。
在下文中一共展示了Model.Model方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import Model [as 別名]
# 或者: from Model import Model [as 別名]
def main(_):
train_data = context_of_idx
with tf.Graph().as_default(), tf.Session(config=config_tf) as session:
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.variable_scope("model", reuse=None, initializer=initializer):
m = Model.Model(is_training=True, config=config)
tf.global_variables_initializer().run()
model_saver = tf.train.Saver(tf.global_variables())
for i in range(config.iteration):
print("Training Epoch: %d ..." % (i+1))
train_perplexity = run_epoch(session, m, train_data, m.train_op)
print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))
if (i+1) % config.save_freq == 0:
print ("model saving ...")
model_saver.save(session, config.model_path+'-%d'%(i+1))
print ("Done!")
示例2: load_model
# 需要導入模塊: import Model [as 別名]
# 或者: from Model import Model [as 別名]
def load_model(self, model_path):
if self.use_gpu is True:
self.model = torch.load(model_path)
if isinstance(self.model, nn.DataParallel):
self.model = self.model.module
self.model.update_use_gpu(self.use_gpu)
self.model.cuda()
self.model = nn.DataParallel(self.model)
else:
self.model = torch.load(model_path, map_location='cpu')
if isinstance(self.model, nn.DataParallel):
self.model = self.model.module
self.model.update_use_gpu(self.use_gpu)
logging.info("Model %s loaded!" % model_path)
logging.info("Total trainable parameters: %d" % (get_trainable_param_num(self.model)))
示例3: test_ModelArgsHashWithDefault
# 需要導入模塊: import Model [as 別名]
# 或者: from Model import Model [as 別名]
def test_ModelArgsHashWithDefault():
M = ModelArgsHashWithDefault
cmp_class_name_eq ( M( 3, 4 ), M( 3, 4 ) )
cmp_class_name_neq ( M( 3, 4 ), M( 5, 6 ) )
cmp_class_name_eq ( M( 3, arg2=4 ), M( 3, arg2=4 ) )
cmp_class_name_neq ( M( 3, arg2=4 ), M( 5, arg2=6 ) )
cmp_class_name_eq ( M( arg1=3, arg2=4 ), M( arg1=3, arg2=4 ) )
cmp_class_name_neq ( M( arg1=3, arg2=4 ), M( arg1=5, arg2=6 ) )
cmp_class_name_eq ( M( arg2=4, arg1=3 ), M( arg1=3, arg2=4 ) )
cmp_class_name_neq ( M( arg2=4, arg1=3 ), M( arg1=5, arg2=6 ) )
cmp_class_name_eq ( M( 3 ), M( 3 ) )
cmp_class_name_neq ( M( 3 ), M( 5 ) )
cmp_class_name_eq ( M( arg1=3 ), M( arg1=3 ) )
cmp_class_name_neq ( M( arg1=3 ), M( arg1=5 ) )
#-----------------------------------------------------------------------
# ClassNameCollision
#-----------------------------------------------------------------------
# A model's class_name is generated during elaboration based on a hash of
# the list of arguments and their values. If two models have the same
# class name, same args, and same arg values (e.g., two Mux's each with 2
# ports and 47 bits, but one is one-hot and one is not), the hashes will
# collide. In Verilog translation, collided names result in both modules
# pointing at the same module definition, so one is incorrect.
#
# This collision is prevented by adding the model's __module__ to the hash
# generation (_gen_class_name). A class's __module__ will be different
# when importing from different modules.
#
# This test case creates two models of class name ClassNameCollisionModel,
# one in this module and one in the Model_dummy_test.py module. They have
# the same name and same args. The test case checks that their Model
# class_name's do not collide after elaborate.
示例4: train
# 需要導入模塊: import Model [as 別名]
# 或者: from Model import Model [as 別名]
def train(dances_lst, param):
torch.cuda.set_device(param.device)
print ("####Initiate model AE")
model = Model.Model(joint_num=57,out_rotation_mode=param.out_rotation_mode)
if(param.read_weight_path!=""):
print ("Load "+param.read_weight_path)
model.load_state_dict(torch.load(param.read_weight_path))
model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=param.lr)#, betas=(0.5,0.9))
model.train()
model.initialize_skeleton_features("../data/standard.bvh")
print ("start train")
for iteration in range(param.start_iteration,param.total_iteration):
save_bvh=False
if(iteration%param.save_bvh_iteration==0):
save_bvh=True
train_one_iteraton(param.logger, dances_lst, param, model, optimizer,
iteration, save_bvh )
if(iteration%param.save_weight_iteration == 0):
path = param.write_weight_folder + "model_%07d"%iteration
#print ("save_weight: " + path)
torch.save(model.state_dict(), path+".weight")
if(iteration%10000 == 0):
path = param.write_weight_folder + "model"
torch.save(model.state_dict(), path+".weight")
示例5: __init__
# 需要導入模塊: import Model [as 別名]
# 或者: from Model import Model [as 別名]
def __init__(self, params):
self._epochs = params['EPOCHS']
self._batch_size = params['BATCH_SIZE']
self._lr = params['LEARNING_RATE']
self._n_class = params['N_CLASS']
self._divide_lr = params['DIVIDE_LEARNING_RATE_AT']
self.data = Data(params)
self.model = Model(params)
self._save_path = os.path.abspath('./Model')
示例6: __init__
# 需要導入模塊: import Model [as 別名]
# 或者: from Model import Model [as 別名]
def __init__(self, params):
self._batch_size = params['BATCH_SIZE']
self.data = Data(params)
self.model = Model(params)
示例7: __init__
# 需要導入模塊: import Model [as 別名]
# 或者: from Model import Model [as 別名]
def __init__(self, params):
self._batch_size = params['BATCH_SIZE']
self._top_k = params['PLOT_TOP_K']
self._save_path = os.path.abspath(params['INFER_PATH'] + 'Plot')
self.data = Data(params)
self.model = Model(params)
示例8: __init__
# 需要導入模塊: import Model [as 別名]
# 或者: from Model import Model [as 別名]
def __init__(self, params):
self._epochs = params['EPOCHS']
self._batch_size = params['BATCH_SIZE']
self._lr = params['LEARNING_RATE']
self._n_class = params['N_CLASS']
self.data = Data(params)
self.model = Model(params)
self._save_path = os.path.abspath('./Model')
示例9: __init__
# 需要導入模塊: import Model [as 別名]
# 或者: from Model import Model [as 別名]
def __init__(self, params):
self._epochs = params['EPOCHS']
self._batch_size = params['BATCH_SIZE']
self._lr = params['LEARNING_RATE']
self._divide_lr = params['DIVIDE_LEARNING_RATE_AT']
self.data = Data(params)
n_class = len(params['REQD_LABELS'])
self.model = Model(params, n_class=n_class)
self._save_path = os.path.abspath('./Model')
示例10: __init__
# 需要導入模塊: import Model [as 別名]
# 或者: from Model import Model [as 別名]
def __init__(self, params):
self._epochs = params['EPOCHS']
self._batch_size = params['BATCH_SIZE']
self._lr = params['LEARNING_RATE']
self._n_class = params['N_CLASS']
self._divide_lr = params['DIVIDE_LEARNING_RATE_AT']
self.data = Data(params)
self.model = Model(params)
self.save_path = os.path.abspath('./Model')
示例11: __init__
# 需要導入模塊: import Model [as 別名]
# 或者: from Model import Model [as 別名]
def __init__(self, params):
self._setup_files(params['SRC_PATH'], params['DST_PATH'])
self.augmentations_per_image = params['AUGMENTATIONS_PER_IMAGE']
self.model = Model(params)
示例12: createModel
# 需要導入模塊: import Model [as 別名]
# 或者: from Model import Model [as 別名]
def createModel(config_path, checkpoint_path, graph_path):
""" Create a TensorRT Model.
config_path (string) - The path to the model config file.
checkpoint_path (string) - The path to the model checkpoint file(s).
graph_path (string) - The path to the model graph.
returns (Model) - The TRT model built or loaded from the input files.
"""
global build_graph, prev_classes
trt_graph = None
input_names = None
if build_graph:
frozen_graph, input_names, output_names = build_detection_graph(
config=config_path,
checkpoint=checkpoint_path
)
trt_graph = trt.create_inference_graph(
input_graph_def=frozen_graph,
outputs=output_names,
max_batch_size=1,
max_workspace_size_bytes=1 << 25,
precision_mode='FP16',
minimum_segment_size=50
)
with open(graph_path, 'wb') as f:
f.write(trt_graph.SerializeToString())
with open('config.txt', 'r+') as json_file:
data = json.load(json_file)
data['model'] = []
data['model'] = [{'input_names': input_names}]
json_file.seek(0)
json_file.truncate()
json.dump(data, json_file)
else:
with open(graph_path, 'rb') as f:
trt_graph = tf.GraphDef()
trt_graph.ParseFromString(f.read())
with open('config.txt') as json_file:
data = json.load(json_file)
input_names = data['model'][0]['input_names']
return Model(trt_graph, input_names)
示例13: test_ClassNameCollision
# 需要導入模塊: import Model [as 別名]
# 或者: from Model import Model [as 別名]
def test_ClassNameCollision():
model1 = ClassNameCollisionModel ( 1, 2 ) # same arg values
model2 = ClassNameCollisionModelDummy( 1, 2 ) # same arg values
model1.elaborate()
model2.elaborate()
assert model1.class_name != model2.class_name
#-----------------------------------------------------------------------
# ClassNameCollisionSameModule
#-----------------------------------------------------------------------
# The ClassNameCollision test case checks for class name collisions due to
# same-name same-args classes in _different_ modules. Collisions can still
# happen if the same-name same-arg classes are in the same module. This
# test case checks for this kind of collision using two classes named
# "ClassNameCollision" placed at different levels of the hierarchy, but
# instantiated with the same name and same args.
#
# TODO: This corner case is not yet fixed and may not need to be fixed. If
# this seems like it is ever going to happen in practice, we will need
# this test case to pass. This test case will pass if we use __class__ in
# the class name generation (_gen_class_name). While this always avoids
# collisions, it also gives a differently named translated Verilog file on
# every run. Having the filename always changing can make it difficult for
# other tools to point to the generated Verilog. Using __module__ in the
# hash generation still avoids class name collisions across modules but
# also keeps the name of the translated Verilog file the same. It means we
# are not avoiding same-class-name same-args collisions in the same
# module, but this seems kind of rare.
# class ClassNameCollisionSameModule( Model ):
# def __init__( s, arg1, arg2 ):
# s.arg1 = arg1
# s.arg2 = arg2
#
# class ClassNameCollisionSameModule( Model ):
# def __init__( s, arg1, arg2 ):
# s.arg1 = arg1
# s.arg2 = arg2
#
# def test_ClassNameCollisionSameModule():
# model1 = ClassNameCollisionSameModule( 1, 2 )
# model2 = ClassNameCollisionSameModule.ClassNameCollisionSameModule( 1, 2 )
# model1.elaborate()
# model2.elaborate()
# assert model1.class_name != model2.class_name
示例14: __init__
# 需要導入模塊: import Model [as 別名]
# 或者: from Model import Model [as 別名]
def __init__(self, phase, conf, problem, vocab_info=None, initialize=True, use_gpu=False, **kwargs):
if initialize is True:
assert vocab_info is not None
self.model = Model(conf, problem, vocab_info, use_gpu)
if use_gpu is True:
self.model = nn.DataParallel(self.model)
self.model = transfer_to_gpu(self.model)
# judge the embedding matrix weight's device
emb_weight_device = list(self.model.module.layers.embedding.embeddings.values())[0].weight.device.type if isinstance(self.model, nn.DataParallel) \
else list(self.model.layers.embedding.embeddings.values())[0].weight.device.type
device = 'GPU' if 'cuda' in emb_weight_device else 'CPU'
logging.info(
"The embedding matrix is on %s now, you can modify the weight_on_gpu parameter to change embeddings weight device." % device)
logging.info("="*100 + '\n' + "*"*15 + "Model Achitecture" + "*"*15)
logging.info(self.model)
#logging.info("Total parameters: %d; trainable parameters: %d" % (get_param_num(self.model), get_trainable_param_num(self.model)))
logging.info("Total trainable parameters: %d" % (get_trainable_param_num(self.model)))
logging.info("Model built!")
else:
self.model = None
self.conf = conf
self.problem = problem
self.phase = phase
self.use_gpu = use_gpu
# if it is a 2-class classification problem, figure out the real positive label
# CAUTION: multi-class classification
if phase != 'predict':
if 'auc' in conf.metrics:
if not hasattr(self.conf, 'pos_label') or self.conf.pos_label is None:
if problem.output_dict.cell_num() == 2 and \
problem.output_dict.has_cell("0") and problem.output_dict.has_cell("1"):
self.conf.pos_label = problem.output_dict.id("1")
logging.debug("Postive label (target index): %d" % self.conf.pos_label)
else:
# default
raise Exception('Please configure the positive label for auc metric at inputs/positive_label in the configuration file')
else:
self.conf.pos_label = problem.output_dict.id(self.conf.pos_label)
else:
self.conf.pos_label = 1 # whatever
self.metrics = conf.metrics
if ProblemTypes[self.problem.problem_type] == ProblemTypes.classification \
or ProblemTypes[self.problem.problem_type] == ProblemTypes.sequence_tagging:
self.evaluator = Evaluator(metrics=self.metrics, pos_label=self.conf.pos_label, tagging_scheme=problem.tagging_scheme, label_indices=self.problem.output_dict.cell_id_map)
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.regression:
self.evaluator = Evaluator(metrics=self.metrics, pos_label=self.conf.pos_label, tagging_scheme=problem.tagging_scheme, label_indices=None)
elif ProblemTypes[self.problem.problem_type] == ProblemTypes.mrc:
curr_mrc_metric = []
for single_mrc_metric in self.metrics:
if 'mrc' in single_mrc_metric.lower():
curr_mrc_metric.append(single_mrc_metric.lower())
else:
curr_mrc_metric.append('mrc_' + single_mrc_metric.lower())
self.evaluator = Evaluator(metrics=curr_mrc_metric, pos_label=self.conf.pos_label, tagging_scheme=problem.tagging_scheme, label_indices=None)
self.use_gpu = use_gpu
self.best_test_result = "(No best test result yet)"