本文整理匯總了Python中GPUtil.getGPUs方法的典型用法代碼示例。如果您正苦於以下問題:Python GPUtil.getGPUs方法的具體用法?Python GPUtil.getGPUs怎麽用?Python GPUtil.getGPUs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類GPUtil
的用法示例。
在下文中一共展示了GPUtil.getGPUs方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_available_device
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def get_available_device(max_memory=0.8):
'''
select available device based on the memory utilization status of the device
:param max_memory: the maximum memory utilization ratio that is considered available
:return: GPU id that is available, -1 means no GPU is available/uses CPU, if GPUtil package is not installed, will
return 0
'''
try:
import GPUtil
except ModuleNotFoundError:
return 0
GPUs = GPUtil.getGPUs()
freeMemory = 0
available=-1
for GPU in GPUs:
if GPU.memoryUtil > max_memory:
continue
if GPU.memoryFree >= freeMemory:
freeMemory = GPU.memoryFree
available = GPU.id
return available
示例2: _read_utilization
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def _read_utilization(self):
with self.lock:
if psutil is not None:
self.values["cpu_util_percent"].append(
float(psutil.cpu_percent(interval=None)))
self.values["ram_util_percent"].append(
float(getattr(psutil.virtual_memory(), "percent")))
if GPUtil is not None:
gpu_list = []
try:
gpu_list = GPUtil.getGPUs()
except Exception:
logger.debug("GPUtil failed to retrieve GPUs.")
for gpu in gpu_list:
self.values["gpu_util_percent" + str(gpu.id)].append(
float(gpu.load))
self.values["vram_util_percent" + str(gpu.id)].append(
float(gpu.memoryUtil))
示例3: GetDefaultScheduler
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def GetDefaultScheduler() -> GpuScheduler:
gpus = GPUtil.getGPUs()
if not gpus:
raise NoGpuAvailable("No GPUs available")
if os.environ.get("TEST_TARGET") and os.environ.get("TEST_WITH_GPU") != "1":
raise NoGpuAvailable("GPUs disabled for tests")
app.Log(
2, "Creating default scheduler for %s", humanize.Plural(len(gpus), "GPU")
)
return GpuScheduler(
{gpu: fasteners.InterProcessLock(_LOCK_DIR / str(gpu.id)) for gpu in gpus}
)
# This function is memoized since we can always acquire the same lock twice.
示例4: gpuname
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def gpuname():
"""Returns the model name of the first available GPU"""
try:
gpus = GPUtil.getGPUs()
except:
LOGGER.warning("Unable to detect GPU model. Is your GPU configured? Are you running with nvidia-docker?")
return "UNKNOWN"
if len(gpus) == 0:
raise ValueError("No GPUs detected in the system")
return gpus[0].name
示例5: test_gpustorage
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def test_gpustorage(self):
# Running basics tutorial problem
with open("tutorials/data/basics_tutorial.pkl", "rb") as f:
X, Y, L, D = pickle.load(f)
Xs, Ys, Ls, Ds = split_data(
X, Y, L, D, splits=[0.8, 0.1, 0.1], stratify_by=Y, seed=123
)
label_model = LabelModel(k=2, seed=123)
label_model.train_model(Ls[0], Y_dev=Ys[1], n_epochs=500, log_train_every=25)
Y_train_ps = label_model.predict_proba(Ls[0])
# Creating a really large end model to use lots of memory
end_model = EndModel([1000, 100000, 2], seed=123, device="cuda")
# Getting initial GPU storage use
initial_gpu_mem = GPUtil.getGPUs()[0].memoryUsed
# Training model
end_model.train_model(
(Xs[0], Y_train_ps),
valid_data=(Xs[1], Ys[1]),
l2=0.1,
batch_size=256,
n_epochs=3,
log_train_every=1,
validation_metric="f1",
)
# Final GPU storage use
final_gpu_mem = GPUtil.getGPUs()[0].memoryUsed
# On a Titan X, this model uses ~ 3 GB of memory
gpu_mem_difference = final_gpu_mem - initial_gpu_mem
self.assertGreater(gpu_mem_difference, 1000)
示例6: _get_device_map
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def _get_device_map(self):
self.logger.info('get devices')
run_on_gpu = False
device_map = [-1] * self.num_worker
if not self.args.cpu:
try:
import GPUtil
num_all_gpu = len(GPUtil.getGPUs())
avail_gpu = GPUtil.getAvailable(order='memory', limit=min(num_all_gpu, self.num_worker),
maxMemory=0.9, maxLoad=0.9)
num_avail_gpu = len(avail_gpu)
if num_avail_gpu >= self.num_worker:
run_on_gpu = True
elif 0 < num_avail_gpu < self.num_worker:
self.logger.warning('only %d out of %d GPU(s) is available/free, but "-num_worker=%d"' %
(num_avail_gpu, num_all_gpu, self.num_worker))
if not self.args.device_map:
self.logger.warning('multiple workers will be allocated to one GPU, '
'may not scale well and may raise out-of-memory')
else:
self.logger.warning('workers will be allocated based on "-device_map=%s", '
'may not scale well and may raise out-of-memory' % self.args.device_map)
run_on_gpu = True
else:
self.logger.warning('no GPU available, fall back to CPU')
if run_on_gpu:
device_map = ((self.args.device_map or avail_gpu) * self.num_worker)[: self.num_worker]
except FileNotFoundError:
self.logger.warning('nvidia-smi is missing, often means no gpu on this machine. '
'fall back to cpu!')
self.logger.info('device map: \n\t\t%s' % '\n\t\t'.join(
'worker %2d -> %s' % (w_id, ('gpu %2d' % g_id) if g_id >= 0 else 'cpu') for w_id, g_id in
enumerate(device_map)))
return device_map
示例7: __log_gpus
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def __log_gpus(self):
for i, gpu in enumerate(GPUtil.getGPUs()):
if i in self.gpu_ids:
# self.writer.add_scalar('gpus/%d/%s' % (gpu.id, 'memoryTotal'), gpu.memoryTotal, step)
# self.writer.add_scalar('gpus/%d/%s' % (gpu.id, 'memoryUsed'), gpu.memoryUsed, step)
# self.writer.add_scalar('gpus/%d/%s' % (gpu.id, 'memoryFree'), gpu.memoryFree, step)
self.writer.add_scalar('gpus/%d/%s' % (gpu.id, 'memoryUtil'), gpu.memoryUtil, self.step_writer)
self.writer.add_scalar('gpus/recentMaxUtil', self.max_recent_util, self.step_writer)
self.step_writer += 1
示例8: __update_recent
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def __update_recent(self):
for i, gpu in enumerate(GPUtil.getGPUs()):
if i in self.gpu_ids:
self.max_recent_util = max(self.max_recent_util, gpu.memoryUtil)
self.step_recent += 1
示例9: gpu_info
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def gpu_info():
"""Return a list of namedtuples representing attributes of each GPU
device.
"""
GPUInfo = namedtuple('GPUInfo', ['name', 'driver', 'totalmem', 'freemem'])
gpus = GPUtil.getGPUs()
info = []
for g in gpus:
info.append(GPUInfo(g.name, g.driver, g.memoryTotal, g.memoryFree))
return info
示例10: gpu_load
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def gpu_load(wproc=0.5, wmem=0.5):
"""Return a list of namedtuples representing the current load for
each GPU device. The processor and memory loads are fractions
between 0 and 1. The weighted load represents a weighted average
of processor and memory loads using the parameters `wproc` and
`wmem` respectively.
"""
GPULoad = namedtuple('GPULoad', ['processor', 'memory', 'weighted'])
gpus = GPUtil.getGPUs()
load = []
for g in gpus:
wload = (wproc * g.load + wmem * g.memoryUtil) / (wproc + wmem)
load.append(GPULoad(g.load, g.memoryUtil, wload))
return load
示例11: __init__
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def __init__(self, delay):
super(Monitor, self).__init__()
self.stopped = False
self.delay = delay # Time between calls to GPUtil
self.recorded_gpu = []
self.recorded_cpu = []
self.recorded_memory = []
self.gpu = GPUtil.getGPUs().pop() if GPUtil.getGPUs() else None
self.start()
示例12: parse
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def parse(self):
if not self.initialized:
self.initialize()
self.opt = self.parser.parse_args()
# === processing options === begin ===
# determine which GPU to use
# auto, throw exception when no GPU is available
if self.opt.gpu_ids == 'auto':
GPUtil.showUtilization()
deviceIDs = GPUtil.getAvailable(order='first', limit=4, maxLoad=0.5, maxMemory=0.5,
excludeID=[], excludeUUID=[])
deviceID_costs = [-1*x for x in deviceIDs]
# reorder the deviceID according to the computational capacity, i.e., total memory size
# memory size is divided by 1000 without remainder, to avoid small fluctuation
gpus = GPUtil.getGPUs()
memory_size_costs = [-1*(gpu.memoryTotal//1000) for gpu in gpus if (gpu.load < 0.5 and gpu.memoryUtil < 0.5)]
names = [gpu.name for gpu in gpus if (gpu.load < 0.5 and gpu.memoryUtil < 0.5)]
sorted_idx = np.lexsort((deviceID_costs, memory_size_costs))
self.opt.gpu_ids = [deviceIDs[sorted_idx[0]]]
print('### selected GPU PCI_ID: %d, Name: %s ###' % (self.opt.gpu_ids[0], names[sorted_idx[0]]))
else:
# split into integer list, manual or multi-gpu
self.opt.gpu_ids = list(map(int, self.opt.gpu_ids.split(',')))
self.opt.device = torch.device("cuda:%d" % self.opt.gpu_ids[0] if (torch.cuda.is_available() and len(self.opt.gpu_ids) >= 1) else "cpu")
# cuda.select_device(self.opt.gpu_ids[0])
# torch.cuda.set_device(self.opt.gpu_ids[0])
# set unique display_id
self.opt.display_id = int(self.opt.display_id + 100 * self.opt.gpu_ids[0])
# assure that 2d & 3d rot are not conflicting
assert ((self.opt.rot_3d & self.opt.rot_horizontal) == False)
# === processing options === end ===
args = vars(self.opt)
print('------------ Options -------------')
for k, v in sorted(args.items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
# save to the disk
expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name)
util.mkdirs(expr_dir)
file_name = os.path.join(expr_dir, 'opt.txt')
with open(file_name, 'wt') as opt_file:
opt_file.write('------------ Options -------------\n')
for k, v in sorted(args.items()):
opt_file.write('%s: %s\n' % (str(k), str(v)))
opt_file.write('-------------- End ----------------\n')
return self.opt
示例13: process_opts
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def process_opts(self):
assert self.opt is not None
# === processing options === begin ===
# determine which GPU to use
# auto, throw exception when no GPU is available
if self.opt.gpu_ids == 'auto':
GPUtil.showUtilization()
deviceIDs = GPUtil.getAvailable(order='first', limit=4, maxLoad=0.5, maxMemory=0.5,
excludeID=[], excludeUUID=[])
deviceID_costs = [-1 * x for x in deviceIDs]
# reorder the deviceID according to the computational capacity, i.e., total memory size
# memory size is divided by 1000 without remainder, to avoid small fluctuation
gpus = GPUtil.getGPUs()
memory_size_costs = [-1 * (gpu.memoryTotal // 1000) for gpu in gpus if
(gpu.load < 0.5 and gpu.memoryUtil < 0.5)]
names = [gpu.name for gpu in gpus if (gpu.load < 0.5 and gpu.memoryUtil < 0.5)]
sorted_idx = np.lexsort((deviceID_costs, memory_size_costs))
self.opt.gpu_ids = [deviceIDs[sorted_idx[0]]]
print('### selected GPU PCI_ID: %d, Name: %s ###' % (self.opt.gpu_ids[0], names[sorted_idx[0]]))
else:
if type(self.opt.gpu_ids) == str:
# split into integer list, manual or multi-gpu
self.opt.gpu_ids = list(map(int, self.opt.gpu_ids.split(',')))
self.opt.device = torch.device(
"cuda:%d" % self.opt.gpu_ids[0] if (torch.cuda.is_available() and len(self.opt.gpu_ids) >= 1) else "cpu")
# cuda.select_device(self.opt.gpu_ids[0])
# torch.cuda.set_device(self.opt.gpu_ids[0])
# set unique display_id
self.opt.display_id = int(self.opt.display_id + 100 * self.opt.gpu_ids[0])
# assure that 2d & 3d rot are not conflicting
assert ((self.opt.rot_3d & self.opt.rot_horizontal) == False)
# === processing options === end ===
args = vars(self.opt)
print('------------ Options -------------')
for k, v in sorted(args.items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
# save to the disk
expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name)
util.mkdirs(expr_dir)
file_name = os.path.join(expr_dir, 'opt.txt')
with open(file_name, 'wt') as opt_file:
opt_file.write('------------ Options -------------\n')
for k, v in sorted(args.items()):
opt_file.write('%s: %s\n' % (str(k), str(v)))
opt_file.write('-------------- End ----------------\n')
示例14: worker_usage
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def worker_usage(session: Session, logger):
provider = ComputerProvider(session)
docker_provider = DockerProvider(session)
computer = socket.gethostname()
docker = docker_provider.get(computer, DOCKER_IMG)
usages = []
count = int(10 / WORKER_USAGE_INTERVAL)
count = max(1, count)
for _ in range(count):
# noinspection PyProtectedMember
memory = dict(psutil.virtual_memory()._asdict())
try:
gpus = GPUtil.getGPUs()
except ValueError as err:
logger.info(f"Active GPUs not found: {err}")
gpus = []
usage = {
'cpu': psutil.cpu_percent(),
'disk': disk(ROOT_FOLDER)[1],
'memory': memory['percent'],
'gpu': [
{
'memory': 0 if np.isnan(
g.memoryUtil) else g.memoryUtil * 100,
'load': 0 if np.isnan(g.load) else g.load * 100
} for g in gpus
]
}
provider.current_usage(computer, usage)
usages.append(usage)
docker.last_activity = now()
docker_provider.update()
time.sleep(WORKER_USAGE_INTERVAL)
usage = json.dumps({'mean': dict_func(usages, np.mean)})
provider.add(ComputerUsage(computer=computer, usage=usage, time=now()))
示例15: main
# 需要導入模塊: import GPUtil [as 別名]
# 或者: from GPUtil import getGPUs [as 別名]
def main():
args = parser.parse_args()
try:
with open(args.save) as fp:
model_info = json.load(fp)
except:
model_info = {}
gpu = GPUtil.getGPUs()[0]
empty_gpu = gpu.memoryUsed
for m in model_names:
if not m in model_info.keys():
# create model
print("=> creating model '{}'".format(m))
if args.pretrained.lower() not in ['false', 'none', 'not', 'no', '0']:
print("=> using pre-trained parameters '{}'".format(args.pretrained))
model = pretrainedmodels.__dict__[m](num_classes=1000,
pretrained=args.pretrained)
else:
model = pretrainedmodels.__dict__[m]()
cudnn.benchmark = True
scale = 0.875
print('Images transformed from size {} to {}'.format(
int(round(max(model.input_size) / scale)),
model.input_size))
batch_sizes = [1, 2, 4, 8, 16, 32, 64]
memory = []
model = model.cuda().eval()
for i, bs in enumerate(batch_sizes):
with torch.no_grad():
_ = model(torch.randn(bs, *model.input_size).cuda(non_blocking=True))
gpu = GPUtil.getGPUs()[0]
memory.append(gpu.memoryUsed - empty_gpu)
model_info[m] = memory
with open(args.save, 'w') as fp:
json.dump(model_info, fp)
del model
torch.cuda.empty_cache()