本文整理匯總了Python中Crypto.Util.number.isPrime方法的典型用法代碼示例。如果您正苦於以下問題:Python number.isPrime方法的具體用法?Python number.isPrime怎麽用?Python number.isPrime使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Crypto.Util.number
的用法示例。
在下文中一共展示了number.isPrime方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_isPrime
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import isPrime [as 別名]
def test_isPrime(self):
"""Util.number.isPrime"""
self.assertEqual(number.isPrime(-3), False) # Regression test: negative numbers should not be prime
self.assertEqual(number.isPrime(-2), False) # Regression test: negative numbers should not be prime
self.assertEqual(number.isPrime(1), False) # Regression test: isPrime(1) caused some versions of PyCrypto to crash.
self.assertEqual(number.isPrime(2), True)
self.assertEqual(number.isPrime(3), True)
self.assertEqual(number.isPrime(4), False)
self.assertEqual(number.isPrime(2L**1279-1), True)
self.assertEqual(number.isPrime(-(2L**1279-1)), False) # Regression test: negative numbers should not be prime
# test some known gmp pseudo-primes taken from
# http://www.trnicely.net/misc/mpzspsp.html
for composite in (43 * 127 * 211, 61 * 151 * 211, 15259 * 30517,
346141L * 692281L, 1007119L * 2014237L, 3589477L * 7178953L,
4859419L * 9718837L, 2730439L * 5460877L,
245127919L * 490255837L, 963939391L * 1927878781L,
4186358431L * 8372716861L, 1576820467L * 3153640933L):
self.assertEqual(number.isPrime(long(composite)), False)
示例2: _generate_prime
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import isPrime [as 別名]
def _generate_prime(bits, rng):
"primtive attempt at prime generation"
hbyte_mask = pow(2, bits % 8) - 1
while True:
# loop catches the case where we increment n into a higher bit-range
x = rng.read((bits+7) // 8)
if hbyte_mask > 0:
x = chr(ord(x[0]) & hbyte_mask) + x[1:]
n = util.inflate_long(x, 1)
n |= 1
n |= (1 << (bits - 1))
while not number.isPrime(n):
n += 2
if util.bit_length(n) == bits:
break
return n
示例3: test_isPrime
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import isPrime [as 別名]
def test_isPrime(self):
"""Util.number.isPrime"""
self.assertEqual(number.isPrime(-3), False) # Regression test: negative numbers should not be prime
self.assertEqual(number.isPrime(-2), False) # Regression test: negative numbers should not be prime
self.assertEqual(number.isPrime(1), False) # Regression test: isPrime(1) caused some versions of PyCrypto to crash.
self.assertEqual(number.isPrime(2), True)
self.assertEqual(number.isPrime(3), True)
self.assertEqual(number.isPrime(4), False)
self.assertEqual(number.isPrime(2**1279-1), True)
self.assertEqual(number.isPrime(-(2**1279-1)), False) # Regression test: negative numbers should not be prime
# test some known gmp pseudo-primes taken from
# http://www.trnicely.net/misc/mpzspsp.html
for composite in (43 * 127 * 211, 61 * 151 * 211, 15259 * 30517,
346141 * 692281, 1007119 * 2014237, 3589477 * 7178953,
4859419 * 9718837, 2730439 * 5460877,
245127919 * 490255837, 963939391 * 1927878781,
4186358431 * 8372716861, 1576820467 * 3153640933):
self.assertEqual(number.isPrime(int(composite)), False)
示例4: do_factor
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import isPrime [as 別名]
def do_factor(num):
try:
res = run(cmd, stdout=PIPE, input=('factor(%d)'%num).encode(), timeout=timelimit)
except TimeoutExpired:
return False
tmp = res.stdout.decode()
tmp = tmp[tmp.find('***factors found***\n\n')+21:].split('\n')
for line in tmp:
pos = line.find(' = ')
if pos == -1:
break
factor = int(line[pos+3:])
if line[0] == 'P' and not isPrime(factor):
return True
return False
示例5: generate_smooth_prime
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import isPrime [as 別名]
def generate_smooth_prime(bit_size, primitive_roots=[], smooth_bit_size=50, exclude=[]):
"""Generate smooth prime n
Args:
bit_size(int): size of generated prime in bits
primitive_roots(list(int)): list of numbers that will be primitive roots modulo n
smooth_bit_size(int): most factors of n-1 will be of this bit size
exclude(list(int)): n-1 won't have any factor from that list
Returns:
int: n
"""
while True:
n = 2
factors = {2:1}
# get random primes of correct size
print('smooth prime - loop of size about {}'.format((bit_size - 2*smooth_bit_size)//smooth_bit_size))
while n.bit_length() < bit_size - 2*smooth_bit_size:
q = getPrime(smooth_bit_size)
if q in exclude:
continue
n *= q
if q in factors:
factors[q] += 1
else:
factors[q] = 1
# find last prime so that n+1 is prime and the size is correct
smooth_bit_size_padded = bit_size - n.bit_length()
print('smooth prime - smooth_bit_size_padded = {}'.format(smooth_bit_size_padded))
while True:
q = getPrime(smooth_bit_size_padded)
if q in exclude:
continue
if isPrime((n*q)+1):
n = (n*q)+1
if q in factors:
factors[q] += 1
else:
factors[q] = 1
break
# check if given numbers are primitive roots
print('smooth prime - checking primitive roots')
are_primitive_roots = True
if len(primitive_roots) > 0:
for factor, factor_power in factors.items():
for primitive_root in primitive_roots:
if pow(primitive_root, (n-1)//(factor**factor_power), n) == 1:
are_primitive_roots = False
break
if are_primitive_roots:
print('smooth prime - done')
return n, factors
else:
print('primitive roots criterion not met')
示例6: generate_smooth_prime
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import isPrime [as 別名]
def generate_smooth_prime(bit_size, primitive_roots=[], smooth_bit_size=50, exclude=[]):
"""Generate smooth prime n
Args:
bit_size(int): size of generated prime in bits
primitive_roots(list(int)): list of numbers that will be primitive roots modulo n
smooth_bit_size(int): most factors of n-1 will be of this bit size
exclude(list(int)): n-1 won't have any factor from that list
Returns:
int: n
"""
while True:
n = 2
factors = {2:1}
# get random primes of correct size
log.debug('smooth prime - loop of size about {}'.format((bit_size - 2*smooth_bit_size)//smooth_bit_size))
while n.bit_length() < bit_size - 2*smooth_bit_size:
q = getPrime(smooth_bit_size)
if q in exclude:
continue
n *= q
if q in factors:
factors[q] += 1
else:
factors[q] = 1
# find last prime so that n+1 is prime and the size is correct
smooth_bit_size_padded = bit_size - n.bit_length()
log.debug('smooth prime - smooth_bit_size_padded = {}'.format(smooth_bit_size_padded))
while True:
q = getPrime(smooth_bit_size_padded)
if q in exclude:
continue
if isPrime((n*q)+1):
n = (n*q)+1
if q in factors:
factors[q] += 1
else:
factors[q] = 1
break
# check if given numbers are primitive roots
log.debug('smooth prime - checking primitive roots')
are_primitive_roots = True
if len(primitive_roots) > 0:
for factor, factor_power in factors.items():
for primitive_root in primitive_roots:
if pow(primitive_root, (n-1)//(factor**factor_power), n) == 1:
are_primitive_roots = False
break
if are_primitive_roots:
log.debug('smooth prime - done')
return n, factors
else:
log.debug('primitive roots criterion not met')