當前位置: 首頁>>代碼示例>>Python>>正文


Python number.inverse方法代碼示例

本文整理匯總了Python中Crypto.Util.number.inverse方法的典型用法代碼示例。如果您正苦於以下問題:Python number.inverse方法的具體用法?Python number.inverse怎麽用?Python number.inverse使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在Crypto.Util.number的用法示例。


在下文中一共展示了number.inverse方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: export_privatekeyblob

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def export_privatekeyblob(self):
        key = self.key.key
        n = key.n
        e = key.e
        d = key.d
        p = key.p
        q = key.q

        n_bytes = long_to_bytes(n)[::-1]
        key_len = len(n_bytes) * 8
        result = PUBLICKEYSTRUC_s.pack(bType_PRIVATEKEYBLOB, CUR_BLOB_VERSION, CALG_RSA_KEYX)
        result += RSAPUBKEY_s.pack(PRIVATEKEYBLOB_MAGIC, key_len, e)
        result += n_bytes
        result += long_to_bytes(p, key_len / 16)[::-1]
        result += long_to_bytes(q, key_len / 16)[::-1]
        result += long_to_bytes(d % (p - 1), key_len / 16)[::-1]
        result += long_to_bytes(d % (q - 1), key_len / 16)[::-1]
        result += long_to_bytes(inverse(q, p), key_len / 16)[::-1]
        result += long_to_bytes(d, key_len / 8)[::-1]
        return result 
開發者ID:crappycrypto,項目名稱:wincrypto,代碼行數:22,代碼來源:algorithms.py

示例2: _decrypt

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def _decrypt(self, M):
        if (not hasattr(self, 'x')):
            raise TypeError('Private key not available in this object')
        ax=pow(M[0], self.x, self.p)
        plaintext=(M[1] * inverse(ax, self.p ) ) % self.p
        return plaintext 
開發者ID:mortcanty,項目名稱:earthengine,代碼行數:8,代碼來源:ElGamal.py

示例3: _sign

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def _sign(self, M, K):
        if (not hasattr(self, 'x')):
            raise TypeError('Private key not available in this object')
        p1=self.p-1
        if (GCD(K, p1)!=1):
            raise ValueError('Bad K value: GCD(K,p-1)!=1')
        a=pow(self.g, K, self.p)
        t=(M-self.x*a) % p1
        while t<0: t=t+p1
        b=(t*inverse(K, p1)) % p1
        return (a, b) 
開發者ID:mortcanty,項目名稱:earthengine,代碼行數:13,代碼來源:ElGamal.py

示例4: _unblind

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def _unblind(self, m, r):
        # compute m / r (mod n)
        return inverse(r, self.n) * m % self.n 
開發者ID:mortcanty,項目名稱:earthengine,代碼行數:5,代碼來源:_slowmath.py

示例5: setUp

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def setUp(self):
        global RSA, Random, bytes_to_long
        from Crypto.PublicKey import RSA
        from Crypto import Random
        from Crypto.Util.number import bytes_to_long, inverse
        self.n = bytes_to_long(a2b_hex(self.modulus))
        self.p = bytes_to_long(a2b_hex(self.prime_factor))

        # Compute q, d, and u from n, e, and p
        self.q = divmod(self.n, self.p)[0]
        self.d = inverse(self.e, (self.p-1)*(self.q-1))
        self.u = inverse(self.p, self.q)    # u = e**-1 (mod q)

        self.rsa = RSA 
開發者ID:mortcanty,項目名稱:earthengine,代碼行數:16,代碼來源:test_RSA.py

示例6: _exercise_primitive

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def _exercise_primitive(self, rsaObj):
        # Since we're using a randomly-generated key, we can't check the test
        # vector, but we can make sure encryption and decryption are inverse
        # operations.
        ciphertext = a2b_hex(self.ciphertext)

        # Test decryption
        plaintext = rsaObj.decrypt((ciphertext,))

        # Test encryption (2 arguments)
        (new_ciphertext2,) = rsaObj.encrypt(plaintext, b(""))
        self.assertEqual(b2a_hex(ciphertext), b2a_hex(new_ciphertext2))

        # Test blinded decryption
        blinding_factor = Random.new().read(len(ciphertext)-1)
        blinded_ctext = rsaObj.blind(ciphertext, blinding_factor)
        blinded_ptext = rsaObj.decrypt((blinded_ctext,))
        unblinded_plaintext = rsaObj.unblind(blinded_ptext, blinding_factor)
        self.assertEqual(b2a_hex(plaintext), b2a_hex(unblinded_plaintext))

        # Test signing (2 arguments)
        signature2 = rsaObj.sign(ciphertext, b(""))
        self.assertEqual((bytes_to_long(plaintext),), signature2)

        # Test verification
        self.assertEqual(1, rsaObj.verify(ciphertext, (bytes_to_long(plaintext),))) 
開發者ID:mortcanty,項目名稱:earthengine,代碼行數:28,代碼來源:test_RSA.py

示例7: rsa_unblind

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def rsa_unblind(message, randint, modulus):
   """
   Return message RSA-unblinded with integer randint for a keypair
   with the provided modulus.
   """
   return number.inverse(randint, modulus) * message % modulus 
開發者ID:nccgroup,項目名稱:featherduster,代碼行數:8,代碼來源:helpers.py

示例8: derive_d_from_pqe

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def derive_d_from_pqe(p,q,e):
   '''
   Given p, q, and e from factored RSA modulus, derive the private component d
   
   p - The first of the two factors of the modulus
   q - The second of the two factors of the modulus
   e - The public exponent
   '''
   return long(number.inverse(e,(p-1)*(q-1))) 
開發者ID:nccgroup,項目名稱:featherduster,代碼行數:11,代碼來源:helpers.py

示例9: lcg_prev_states

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def lcg_prev_states(states, num_states=5, a=None, c=None, m=None):
   '''
      Given the current state of an LCG, return the previous states
   in sequence.
   
      Currently, the modulus must be known. Other parameters can be
   recovered given enough sequential states.
   
   states - (list of ints) Known sequential states from the LCG.
   num_states - (int) The number of past states to generate.
   a - (int) The multiplier for the LCG.
   c - (int) The addend for the LCG.
   m - (int) The modulus for the LCG.
   '''

   if not all([a,c,m]):
      parameters = lcg_recover_parameters(states,a,c,m)
      if parameters == False:
         return False
      else:
         (a,c,m) = parameters

   current_state = states[0]
   prev_states = []
   for i in range(num_states):
      current_state = (((current_state - c) % m) * number.inverse(a, m)) % m
      prev_states.insert(0,current_state)

   return prev_states 
開發者ID:nccgroup,項目名稱:featherduster,代碼行數:31,代碼來源:modern.py

示例10: dsa_repeated_nonce_attack

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def dsa_repeated_nonce_attack(r,msg1,s1,msg2,s2,n,verbose=False):
   '''
   Recover k (nonce) and Da (private signing key) from two DSA or ECDSA signed messages
   with identical k values
   
   Takes the following arguments:
   string: r (r value of signatures)
   string: msg1 (first message)
   string: s1 (s value of first signature)
   string: msg2 (second message)
   string: s2 (s value of second signature)
   long: n (curve order for ECDSA or modulus (q parameter) for DSA)
   
   adapted from code by Antonio Bianchi (antoniob@cs.ucsb.edu)
   <http://antonio-bc.blogspot.com/2013/12/mathconsole-ictf-2013-writeup.html>
   '''
   r = string_to_long(r)
   s1 = string_to_long(s1)
   s2 = string_to_long(s2)
   # convert messages to sha1 hash as number
   z1 = string_to_long(SHA.new(msg1).digest())
   z2 = string_to_long(SHA.new(msg2).digest())
   
   sdiff_inv = number.inverse(((s1-s2)%n),n)
   k = ( ((z1-z2)%n) * sdiff_inv) % n
   
   r_inv = number.inverse(r,n)
   da = (((((s1*k) %n) -z1) %n) * r_inv) % n
   
   if verbose:
      print "Recovered k:" + hex(k)
      print "Recovered Da: " + hex(da)
   
   return (k, da) 
開發者ID:nccgroup,項目名稱:featherduster,代碼行數:36,代碼來源:modern.py

示例11: _decrypt

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def _decrypt(ciphertext, privkey):
	"""
	Decrypt ciphertext using ElGamal Encryption System

	:Parameters:
		ciphertext : int/long tuple
			Ciphertext of ElGamal encrypted plaintext
		privkey : instance of `PrivateKey` class
		 	Receiver's private key used for decryption

	:Variables:
		g : int/long
			Base point for modular exponentiation.
		p : int/long
			Modulus for modular exponentiation. Should be a safe prime.
		q : int/long
			Order of group generated by p and equals p-1
		c1, c2: int/long
			Ciphertext pair
		x : int/long
			Receiver's private key, should be kept secret.
		s : int/long
			Shared secret

	"""
	c1, c2 = ciphertext
	g = privkey.g
	p = privkey.p
	x = privkey.x
	s = pow(c1, x, p)
	m = (c2*inverse(s, p)) % p
	return m 
開發者ID:ashutosh1206,項目名稱:Crypton,代碼行數:34,代碼來源:example.py

示例12: crack

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def crack(n, e, encrypted_data):
    print('n: %s' % n)
    print('e: %s' % e)
    success, p, q = prime_factor(n)
    # success, p, q = True, 323067951880962860113901833788589140869, 263074551335953569706833061753492041353
    if success:
        d = inverse(e, (p - 1) * (q - 1))
        print('d: %s' % d)
        rsa = RSA.construct((n, e, d))
        plain = rsa.decrypt(encrypted_data)
        print(plain) 
開發者ID:restran,項目名稱:hacker-scripts,代碼行數:13,代碼來源:rsa_crack2.py

示例13: curve25519

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def curve25519(secret, basepoint):
    a = ord(secret[0])
    a &= 248
    b = ord(secret[31])
    b &= 127
    b |= 64
    s = chr(a) + secret[1:-1] + chr(b)

    s = number.bytes_to_long(s[::-1])
    basepoint = number.bytes_to_long(basepoint[::-1])

    x, z = curve25519_mult(s, basepoint)
    zmone = number.inverse(z, CURVE_P)
    z = x * zmone % CURVE_P
    return number.long_to_bytes(z)[::-1] 
開發者ID:n0fate,項目名稱:iChainbreaker,代碼行數:17,代碼來源:curve25519.py

示例14: setUp

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def setUp(self):
        global RSA, Random, bytes_to_long
        from Crypto.PublicKey import RSA
        from Crypto import Random
        from Crypto.Util.number import bytes_to_long, inverse
        self.n = bytes_to_long(a2b_hex(self.modulus))
        self.p = bytes_to_long(a2b_hex(self.prime_factor))

        # Compute q, d, and u from n, e, and p
        self.q = self.n // self.p
        self.d = inverse(self.e, (self.p-1)*(self.q-1))
        self.u = inverse(self.p, self.q)    # u = e**-1 (mod q)

        self.rsa = RSA 
開發者ID:vcheckzen,項目名稱:FODI,代碼行數:16,代碼來源:test_RSA.py

示例15: test_construct_bad_key6

# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import inverse [as 別名]
def test_construct_bad_key6(self):
        tup = (self.n, self.e, self.d, self.p, self.q, 10)
        self.assertRaises(ValueError, self.rsa.construct, tup)

        from Crypto.Util.number import inverse
        tup = (self.n, self.e, self.d, self.p, self.q, inverse(self.q, self.p))
        self.assertRaises(ValueError, self.rsa.construct, tup) 
開發者ID:vcheckzen,項目名稱:FODI,代碼行數:9,代碼來源:test_RSA.py


注:本文中的Crypto.Util.number.inverse方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。