本文整理匯總了Python中Crypto.Util.number.getPrime方法的典型用法代碼示例。如果您正苦於以下問題:Python number.getPrime方法的具體用法?Python number.getPrime怎麽用?Python number.getPrime使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Crypto.Util.number
的用法示例。
在下文中一共展示了number.getPrime方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: getprimeover
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import getPrime [as 別名]
def getprimeover(N):
"""Return a random N-bit prime number using the System's best
Cryptographic random source.
Use GMP if available, otherwise fallback to PyCrypto
"""
if HAVE_GMP:
randfunc = random.SystemRandom()
r = gmpy2.mpz(randfunc.getrandbits(N))
r = gmpy2.bit_set(r, N - 1)
return int(gmpy2.next_prime(r))
elif HAVE_CRYPTO:
return number.getPrime(N, os.urandom)
else:
randfunc = random.SystemRandom()
n = randfunc.randrange(2**(N-1), 2**N) | 1
while not is_prime(n):
n += 2
return n
示例2: generatePrime
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import getPrime [as 別名]
def generatePrime(bits):
return getPrime(bits);
# The second is that you need an "invmod" operation (the multiplicative
# inverse), which is not an operation that is wired into your
# language. The algorithm is just a couple lines, but I always lose an
# hour getting it to work.
# I recommend you not bother with primegen, but do take the time to get
# your own EGCD and invmod algorithm working.
示例3: __init__
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import getPrime [as 別名]
def __init__(self, key_length):
"""In this exercise, e is fixed to 3 so we will have to find p and q that fit the requirements."""
self.e = 3
phi = 0
while gcd(self.e, phi) != 1:
p, q = getPrime(key_length // 2), getPrime(key_length // 2)
phi = lcm(p - 1, q - 1)
self.n = p * q
self._d = mod_inv(self.e, phi)
示例4: handle_client
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import getPrime [as 別名]
def handle_client(self, c, cid):
try:
#Diffie-Helmen Exchange
shared_prime = number.getPrime(10)
shared_base = number.getPrime(10)
server_secret = random.randint(0, 99)
c.send(str(shared_prime) + "|" + str(shared_base) + "~")
a = ((shared_base**server_secret) % shared_prime)
print "sending %s to client" %( str(shared_prime) + "|" + str(shared_base))
c.send("%ld~" % a) # send A
b = long(c.recv(1024)) # receive B
print "got %ld from client" % b
self.keys[c] = pad("%ld" % ((b ** server_secret) % shared_prime))
print self.keys[c]
n = c.recv(1024)
print n
print self.decrypt(n, c)
_, name, name = self.unpack_data(self.decrypt(n, c))
name = name.replace(END_SEP, "").replace(SEP, "")
print("(%s)" % name)
self.ids[cid] = name
self.clients[cid] = c
if name == "PinaColada":
self.pi = c
app.config["server"] = self
print "[*] Pina Colada has connected."
else:
print '[*] Tunnel initialized for user %s' % name
self.tunnels[cid] = c
except Exception as e:
self.print_exc(e, "\n[!] Failed to initialize client connection for %d." % id, always=True)
self.close(cid)
traceback.print_exc()
return False
try:
while True:
d = c.recv(1024)
print d
print self.decrypt(d, c)
msgs = filter(None, self.decrypt(d, c).split(END_SEP))
print msgs
for m in msgs:
self.inbound(m, c)
#print d
except Exception as e:
self.print_exc(e, "")
print("[!] Connection closed from client %d (%s) - %s" % (cid, self.ids[cid], self.ips[cid]))
self.close(cid)
示例5: generate_smooth_prime
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import getPrime [as 別名]
def generate_smooth_prime(bit_size, primitive_roots=[], smooth_bit_size=50, exclude=[]):
"""Generate smooth prime n
Args:
bit_size(int): size of generated prime in bits
primitive_roots(list(int)): list of numbers that will be primitive roots modulo n
smooth_bit_size(int): most factors of n-1 will be of this bit size
exclude(list(int)): n-1 won't have any factor from that list
Returns:
int: n
"""
while True:
n = 2
factors = {2:1}
# get random primes of correct size
print('smooth prime - loop of size about {}'.format((bit_size - 2*smooth_bit_size)//smooth_bit_size))
while n.bit_length() < bit_size - 2*smooth_bit_size:
q = getPrime(smooth_bit_size)
if q in exclude:
continue
n *= q
if q in factors:
factors[q] += 1
else:
factors[q] = 1
# find last prime so that n+1 is prime and the size is correct
smooth_bit_size_padded = bit_size - n.bit_length()
print('smooth prime - smooth_bit_size_padded = {}'.format(smooth_bit_size_padded))
while True:
q = getPrime(smooth_bit_size_padded)
if q in exclude:
continue
if isPrime((n*q)+1):
n = (n*q)+1
if q in factors:
factors[q] += 1
else:
factors[q] = 1
break
# check if given numbers are primitive roots
print('smooth prime - checking primitive roots')
are_primitive_roots = True
if len(primitive_roots) > 0:
for factor, factor_power in factors.items():
for primitive_root in primitive_roots:
if pow(primitive_root, (n-1)//(factor**factor_power), n) == 1:
are_primitive_roots = False
break
if are_primitive_roots:
print('smooth prime - done')
return n, factors
else:
print('primitive roots criterion not met')
示例6: generate_smooth_prime
# 需要導入模塊: from Crypto.Util import number [as 別名]
# 或者: from Crypto.Util.number import getPrime [as 別名]
def generate_smooth_prime(bit_size, primitive_roots=[], smooth_bit_size=50, exclude=[]):
"""Generate smooth prime n
Args:
bit_size(int): size of generated prime in bits
primitive_roots(list(int)): list of numbers that will be primitive roots modulo n
smooth_bit_size(int): most factors of n-1 will be of this bit size
exclude(list(int)): n-1 won't have any factor from that list
Returns:
int: n
"""
while True:
n = 2
factors = {2:1}
# get random primes of correct size
log.debug('smooth prime - loop of size about {}'.format((bit_size - 2*smooth_bit_size)//smooth_bit_size))
while n.bit_length() < bit_size - 2*smooth_bit_size:
q = getPrime(smooth_bit_size)
if q in exclude:
continue
n *= q
if q in factors:
factors[q] += 1
else:
factors[q] = 1
# find last prime so that n+1 is prime and the size is correct
smooth_bit_size_padded = bit_size - n.bit_length()
log.debug('smooth prime - smooth_bit_size_padded = {}'.format(smooth_bit_size_padded))
while True:
q = getPrime(smooth_bit_size_padded)
if q in exclude:
continue
if isPrime((n*q)+1):
n = (n*q)+1
if q in factors:
factors[q] += 1
else:
factors[q] = 1
break
# check if given numbers are primitive roots
log.debug('smooth prime - checking primitive roots')
are_primitive_roots = True
if len(primitive_roots) > 0:
for factor, factor_power in factors.items():
for primitive_root in primitive_roots:
if pow(primitive_root, (n-1)//(factor**factor_power), n) == 1:
are_primitive_roots = False
break
if are_primitive_roots:
log.debug('smooth prime - done')
return n, factors
else:
log.debug('primitive roots criterion not met')