當前位置: 首頁>>代碼示例>>Python>>正文


Python ConfigSpace.CategoricalHyperparameter方法代碼示例

本文整理匯總了Python中ConfigSpace.CategoricalHyperparameter方法的典型用法代碼示例。如果您正苦於以下問題:Python ConfigSpace.CategoricalHyperparameter方法的具體用法?Python ConfigSpace.CategoricalHyperparameter怎麽用?Python ConfigSpace.CategoricalHyperparameter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ConfigSpace的用法示例。


在下文中一共展示了ConfigSpace.CategoricalHyperparameter方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setUp

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def setUp(self):
		self.configspace = CS.ConfigurationSpace()

		self.HPs = []
		
		self.HPs.append( CS.CategoricalHyperparameter('parent', [1,2,3]))
		
		self.HPs.append( CS.CategoricalHyperparameter('child1_x1', ['foo','bar']))
		self.HPs.append( CS.UniformFloatHyperparameter('child2_x1', lower=-1, upper=1))
		self.HPs.append( CS.UniformIntegerHyperparameter('child3_x1', lower=-2, upper=5))

		self.configspace.add_hyperparameters(self.HPs)
		
		self.conditions = []
		
		self.conditions += [CS.EqualsCondition(self.HPs[1], self.HPs[0], 1)]
		self.conditions += [CS.EqualsCondition(self.HPs[2], self.HPs[0], 2)] 
		self.conditions += [CS.EqualsCondition(self.HPs[3], self.HPs[0], 3)]
		[self.configspace.add_condition(cond) for cond in self.conditions] 
開發者ID:automl,項目名稱:HpBandSter,代碼行數:21,代碼來源:test_config_generators.py

示例2: create_configspace

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def create_configspace(parameter_config):
        """
        Wrap the Worker's get_configspace() function for HpBandSter interface
        """
        cs = CS.ConfigurationSpace()
        params = []
        for config in parameter_config:
            p = AbstractProposer.parse_param_config(config)
            if p['type'] == 'choice':
                param = CS.CategoricalHyperparameter(p['name'], choices=p['range'])
            else:  # for int or float
                param = dict(name=p['name'])
                param['lower'], param['upper'] = min(p['range']), max(p['range'])
                if p['type'] == 'int':
                    param = CS.UniformIntegerHyperparameter(**param)
                else:
                    param = CS.UniformFloatHyperparameter(**param)
            params.append(param)
        cs.add_hyperparameters(params)
        return cs 
開發者ID:LGE-ARC-AdvancedAI,項目名稱:auptimizer,代碼行數:22,代碼來源:BOHBProposer.py

示例3: get_config_space

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def get_config_space(
        num_layers=(1, 15),
        max_units=((10, 1024), True),
        activation=('sigmoid', 'tanh', 'relu'),
        mlp_shape=('funnel', 'long_funnel', 'diamond', 'hexagon', 'brick', 'triangle', 'stairs'),
        max_dropout=(0, 1.0),
        use_dropout=(True, False)
    ):
        cs = CS.ConfigurationSpace()
        
        mlp_shape_hp = get_hyperparameter(CSH.CategoricalHyperparameter, 'mlp_shape', mlp_shape)
        cs.add_hyperparameter(mlp_shape_hp)

        num_layers_hp = get_hyperparameter(CSH.UniformIntegerHyperparameter, 'num_layers', num_layers)
        cs.add_hyperparameter(num_layers_hp)
        max_units_hp = get_hyperparameter(CSH.UniformIntegerHyperparameter, "max_units", max_units)
        cs.add_hyperparameter(max_units_hp)

        use_dropout_hp = add_hyperparameter(cs, CS.CategoricalHyperparameter, "use_dropout", use_dropout)

        max_dropout_hp = add_hyperparameter(cs, CSH.UniformFloatHyperparameter, "max_dropout", max_dropout)
        cs.add_condition(CS.EqualsCondition(max_dropout_hp, use_dropout_hp, True))

        add_hyperparameter(cs, CSH.CategoricalHyperparameter, 'activation', activation)
        return cs 
開發者ID:automl,項目名稱:Auto-PyTorch,代碼行數:27,代碼來源:shapedmlpnet.py

示例4: get_configuration_space

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def get_configuration_space():
        cs = ConfigSpace.ConfigurationSpace()

        cs.add_hyperparameter(ConfigSpace.OrdinalHyperparameter("n_units_1", [16, 32, 64, 128, 256, 512]))
        cs.add_hyperparameter(ConfigSpace.OrdinalHyperparameter("n_units_2", [16, 32, 64, 128, 256, 512]))
        cs.add_hyperparameter(ConfigSpace.OrdinalHyperparameter("dropout_1", [0.0, 0.3, 0.6]))
        cs.add_hyperparameter(ConfigSpace.OrdinalHyperparameter("dropout_2", [0.0, 0.3, 0.6]))
        cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter("activation_fn_1", ["tanh", "relu"]))
        cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter("activation_fn_2", ["tanh", "relu"]))
        cs.add_hyperparameter(
            ConfigSpace.OrdinalHyperparameter("init_lr", [5 * 1e-4, 1e-3, 5 * 1e-3, 1e-2, 5 * 1e-2, 1e-1]))
        cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter("lr_schedule", ["cosine", "const"]))
        cs.add_hyperparameter(ConfigSpace.OrdinalHyperparameter("batch_size", [8, 16, 32, 64]))
        return cs 
開發者ID:automl,項目名稱:nas_benchmarks,代碼行數:16,代碼來源:fcnet_benchmark.py

示例5: get_configuration_space

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def get_configuration_space():
        cs = ConfigSpace.ConfigurationSpace()

        ops_choices = ['conv1x1-bn-relu', 'conv3x3-bn-relu', 'maxpool3x3']
        cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter("op_node_0", ops_choices))
        cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter("op_node_1", ops_choices))
        cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter("op_node_2", ops_choices))
        cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter("op_node_3", ops_choices))
        cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter("op_node_4", ops_choices))
        for i in range(VERTICES * (VERTICES - 1) // 2):
            cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter("edge_%d" % i, [0, 1]))
        return cs 
開發者ID:automl,項目名稱:nas_benchmarks,代碼行數:14,代碼來源:nas_cifar10.py

示例6: setUp

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def setUp(self):
		self.configspace = CS.ConfigurationSpace(43)
		
		HPs=[]
		HPs.append( CS.CategoricalHyperparameter('cat1', choices=['foo', 'bar', 'baz']))
		self.configspace.add_hyperparameters(HPs)
		
		x_train_confs = [ self.configspace.sample_configuration() for i in range(self.n_train)]
		self.x_train = np.array(	[c.get_array() for c in x_train_confs]).squeeze()

		x_test_confs = [ self.configspace.sample_configuration() for i in range(self.n_test)]
		self.x_test= np.array(	[c.get_array() for c in x_train_confs]).squeeze() 
開發者ID:automl,項目名稱:HpBandSter,代碼行數:14,代碼來源:test_kernels.py

示例7: add_hyperparameters

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def add_hyperparameters(self):
		HPs=[]
		HPs.append( CS.CategoricalHyperparameter('cat1', choices=['foo', 'bar', 'baz']))
		self.configspace.add_hyperparameters(HPs) 
開發者ID:automl,項目名稱:HpBandSter,代碼行數:6,代碼來源:test_kde.py

示例8: _get_types

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def _get_types(self):
		""" extracts the needed types from the configspace for faster retrival later
		
			type = 0 - numerical (continuous or integer) parameter
			type >=1 - categorical parameter
			
			TODO: figure out a way to properly handle ordinal parameters
		
		"""
		types = []
		num_values = []
		for hp in self.configspace.get_hyperparameters():
			#print(hp)
			if isinstance(hp, CS.CategoricalHyperparameter):
				types.append('U')
				num_values.append(len(hp.choices))
			elif isinstance(hp, CS.UniformIntegerHyperparameter):
				types.append('I')
				num_values.append((hp.upper - hp.lower + 1))
			elif isinstance(hp, CS.UniformFloatHyperparameter):
				types.append('C')
				num_values.append(np.inf)
			elif isinstance(hp, CS.OrdinalHyperparameter):
				types.append('O')
				num_values.append(len(hp.sequence))
			else:
				raise ValueError('Unsupported Parametertype %s'%type(hp))
		return(types, num_values) 
開發者ID:automl,項目名稱:HpBandSter,代碼行數:30,代碼來源:mvkde.py

示例9: get_configuration_space

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def get_configuration_space(self):
        cs = ConfigSpace.ConfigurationSpace()

        for node in list(self.num_parents_per_node.keys())[1:-1]:
            cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter("choice_block_{}_op".format(node),
                                                                        [CONV1X1, CONV3X3, MAXPOOL3X3]))

        for choice_block_index, num_parents in list(self.num_parents_per_node.items())[1:]:
            cs.add_hyperparameter(
                ConfigSpace.CategoricalHyperparameter(
                    "choice_block_{}_parents".format(choice_block_index),
                    parent_combinations(node=choice_block_index, num_parents=num_parents)))
        return cs 
開發者ID:automl,項目名稱:nasbench-1shot1,代碼行數:15,代碼來源:search_space.py

示例10: get_configuration_space

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def get_configuration_space(max_nodes, search_space):
  cs = ConfigSpace.ConfigurationSpace()
  #edge2index   = {}
  for i in range(1, max_nodes):
    for j in range(i):
      node_str = '{:}<-{:}'.format(i, j)
      cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space))
  return cs 
開發者ID:D-X-Y,項目名稱:AutoDL-Projects,代碼行數:10,代碼來源:BOHB.py

示例11: setUp

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def setUp(self):
        logging.basicConfig(level=logging.ERROR)
        np.random.seed(123)

        self.X = np.random.uniform(-5, 5, 100)
        self.y = np.random.normal(self.X, 1)

        self.opt_func = lambda x, y, w, budget: np.mean(
            (y[:int(budget)] - w * x[:int(budget)]) ** 2)

        self.cs = CS.ConfigurationSpace()
        self.cs.add_hyperparameter(
            CS.CategoricalHyperparameter('w', [0, 1])
        ) 
開發者ID:automl,項目名稱:BOAH,代碼行數:16,代碼來源:test_fmin.py

示例12: get_config_space

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def get_config_space(
        num_groups=(1, 9),
        blocks_per_group=(1, 4),
        max_units=((10, 1024), True),
        activation=('sigmoid', 'tanh', 'relu'),
        max_shake_drop_probability=(0, 1),
        max_dropout=(0, 1.0),
        resnet_shape=('funnel', 'long_funnel', 'diamond', 'hexagon', 'brick', 'triangle', 'stairs'),
        use_dropout=(True, False),
        use_shake_shake=(True, False),
        use_shake_drop=(True, False)
    ):
        cs = CS.ConfigurationSpace()
        
        num_groups_hp = get_hyperparameter(CS.UniformIntegerHyperparameter, "num_groups", num_groups)
        cs.add_hyperparameter(num_groups_hp)
        blocks_per_group_hp = get_hyperparameter(CS.UniformIntegerHyperparameter, "blocks_per_group", blocks_per_group)
        cs.add_hyperparameter(blocks_per_group_hp)
        add_hyperparameter(cs, CS.CategoricalHyperparameter, "activation", activation)
        use_dropout_hp = add_hyperparameter(cs, CS.CategoricalHyperparameter, "use_dropout", use_dropout)
        add_hyperparameter(cs, CS.CategoricalHyperparameter, "use_shake_shake", use_shake_shake)
        
        shake_drop_hp = add_hyperparameter(cs, CS.CategoricalHyperparameter, "use_shake_drop", use_shake_drop)
        if True in use_shake_drop:
            shake_drop_prob_hp = add_hyperparameter(cs, CS.UniformFloatHyperparameter, "max_shake_drop_probability",
                max_shake_drop_probability)
            cs.add_condition(CS.EqualsCondition(shake_drop_prob_hp, shake_drop_hp, True))
        
        add_hyperparameter(cs, CSH.CategoricalHyperparameter, 'resnet_shape', resnet_shape)
        add_hyperparameter(cs, CSH.UniformIntegerHyperparameter, "max_units", max_units)

        if True in use_dropout:
            max_dropout_hp = add_hyperparameter(cs, CSH.UniformFloatHyperparameter, "max_dropout", max_dropout)
            cs.add_condition(CS.EqualsCondition(max_dropout_hp, use_dropout_hp, True))

        return cs 
開發者ID:automl,項目名稱:Auto-PyTorch,代碼行數:38,代碼來源:shapedresnet.py

示例13: get_config_space

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def get_config_space(
        num_layers=((1, 15), False),
        num_units=((10, 1024), True),
        activation=('sigmoid', 'tanh', 'relu'),
        dropout=(0.0, 0.8),
        use_dropout=(True, False),
        **kwargs
    ):
        cs = CS.ConfigurationSpace()

        num_layers_hp = get_hyperparameter(CSH.UniformIntegerHyperparameter, 'num_layers', num_layers)
        cs.add_hyperparameter(num_layers_hp)
        use_dropout_hp = add_hyperparameter(cs, CS.CategoricalHyperparameter, "use_dropout", use_dropout)

        for i in range(1, num_layers[0][1] + 1):
            n_units_hp = get_hyperparameter(CSH.UniformIntegerHyperparameter, "num_units_%d" % i, kwargs.pop("num_units_%d" % i, num_units))
            cs.add_hyperparameter(n_units_hp)

            if i > num_layers[0][0]:
                cs.add_condition(CS.GreaterThanCondition(n_units_hp, num_layers_hp, i - 1))

            if True in use_dropout:
                dropout_hp = get_hyperparameter(CSH.UniformFloatHyperparameter, "dropout_%d" % i, kwargs.pop("dropout_%d" % i, dropout))
                cs.add_hyperparameter(dropout_hp)
                dropout_condition_1 = CS.EqualsCondition(dropout_hp, use_dropout_hp, True)

                if i > num_layers[0][0]:
                    dropout_condition_2 = CS.GreaterThanCondition(dropout_hp, num_layers_hp, i - 1)
                    cs.add_condition(CS.AndConjunction(dropout_condition_1, dropout_condition_2))
                else:
                    cs.add_condition(dropout_condition_1)
        
        add_hyperparameter(cs, CSH.CategoricalHyperparameter,'activation', activation)
        assert len(kwargs) == 0, "Invalid hyperparameter updates for mlpnet: %s" % str(kwargs)
        return(cs) 
開發者ID:automl,項目名稱:Auto-PyTorch,代碼行數:37,代碼來源:mlpnet.py

示例14: get_hyperparameter_search_space

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def get_hyperparameter_search_space(
        initialize_bias=("Yes", "No", "Zero")
    ):
        cs = ConfigSpace.ConfigurationSpace()
        add_hyperparameter(cs, ConfigSpace.CategoricalHyperparameter, "initialize_bias", initialize_bias)
        return cs 
開發者ID:automl,項目名稱:Auto-PyTorch,代碼行數:8,代碼來源:initialization.py

示例15: get_ndarray_bounds

# 需要導入模塊: import ConfigSpace [as 別名]
# 或者: from ConfigSpace import CategoricalHyperparameter [as 別名]
def get_ndarray_bounds(self) -> List[Tuple[float, float]]:
        bounds = []
        final_bound = None
        for hp in self.config_space.get_hyperparameters():
            if isinstance(hp, CS.CategoricalHyperparameter):
                if not self._fix_attribute_value(hp.name):
                    bound = [(0., 1.)] * len(hp.choices)
                else:
                    bound = [(0., 0.)] * len(hp.choices)
                    bound[int(self.value_for_last_pos)] = (1., 1.)
            else:
                if not self._fix_attribute_value(hp.name):
                    bound = [(0., 1.)]
                else:
                    val_int = float(hp._inverse_transform(
                        np.array([self.value_for_last_pos])).item())
                    bound = [(val_int, val_int)]
            if hp.name == self.name_last_pos:
                final_bound = bound
            else:
                bounds.extend(bound)
        if final_bound is not None:
            bounds.extend(final_bound)
        return bounds

    # NOTE: Assumes that config argument not used afterwards... 
開發者ID:awslabs,項目名稱:autogluon,代碼行數:28,代碼來源:hp_ranges.py


注:本文中的ConfigSpace.CategoricalHyperparameter方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。