當前位置: 首頁>>代碼示例>>Python>>正文


Python XGBClassifier.get_xgb_params方法代碼示例

本文整理匯總了Python中xgboost.sklearn.XGBClassifier.get_xgb_params方法的典型用法代碼示例。如果您正苦於以下問題:Python XGBClassifier.get_xgb_params方法的具體用法?Python XGBClassifier.get_xgb_params怎麽用?Python XGBClassifier.get_xgb_params使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在xgboost.sklearn.XGBClassifier的用法示例。


在下文中一共展示了XGBClassifier.get_xgb_params方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: do_cell

# 需要導入模塊: from xgboost.sklearn import XGBClassifier [as 別名]
# 或者: from xgboost.sklearn.XGBClassifier import get_xgb_params [as 別名]
def do_cell(task):
    df_train, df_test, x_start, y_start = task[0], task[1], task[2], task[3]
    #print('do_cell', df_train.shape, df_test.shape, x_start, y_start)

    #train
    n_places_th_local = n_places_th
    n_places_local = n_places

    if n_places != 0:
        tmp = df_train.shape[0]
        value_counts = df_train.place_id.value_counts()[0:n_places]
        df_train = pd.merge(df_train, pd.DataFrame(value_counts), left_on='place_id', right_index=True)[df_train.columns]
        n_places_th_local = value_counts.values[n_places - 1]
        percentage = df_train.shape[0]/tmp

    elif n_places_th != 0:
        value_counts = df_train.place_id.value_counts()
        n_places_local = value_counts[value_counts >= n_places_th_local].count()
        mask = value_counts[df_train.place_id.values] >= n_places_th_local
        percentage = mask.value_counts()[True]/df_train.shape[0]
        df_train = df_train.loc[mask.values]

    else:
        n_places_th_local = 2

        value_counts = df_train.place_id.value_counts()
        n_places_local = value_counts[value_counts >= n_places_th_local].count()
        mask = value_counts[df_train.place_id.values] >= n_places_th_local
        percentage = mask.value_counts()[True]/df_train.shape[0]

        while percentage > n_places_percentage:
            n_places_th_local += 1
            n_places_local = value_counts[value_counts >= n_places_th_local].count()
            mask = value_counts[df_train.place_id.values] >= n_places_th_local
            percentage = mask.value_counts()[True]/df_train.shape[0]

        n_places_th_local -= 1
        n_places_local = value_counts[value_counts >= n_places_th_local].count()
        mask = value_counts[df_train.place_id.values] >= n_places_th_local
        percentage = mask.value_counts()[True]/df_train.shape[0]

        df_train = df_train.loc[mask.values]


    #print(x_start, y_start, n_places_local, n_places_th_local, percentage)
        
    #test
    row_ids = df_test.index
    if 'place_id' in df_test.columns:
        df_test = df_test.drop(['place_id'], axis=1)

    le = LabelEncoder()
    y = le.fit_transform(df_train.place_id.values)
    
    X = df_train.drop(['place_id'], axis=1).values
    X_predict = df_test.values

    score = 0
    n_estimators = 0
    if xgb == 1:    
        if xgb_calculate_n_estimators == True:
            clf = XGBClassifier(max_depth=max_depth, learning_rate=learning_rate, n_estimators=5000, objective='multi:softprob', subsample=ss, colsample_bytree=cs, gamma=gamma, min_child_weight=min_child_weight, reg_lambda=reg_lambda, reg_alpha=reg_alpha)

            if train_test == 1:
                X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
   
                clf.fit(X_train, y_train, eval_set=[(X_test, y_test)], eval_metric=calculate_score, early_stopping_rounds=early_stopping_rounds, verbose=10 if one_cell == 1 else False)
                score = round(1 - clf.booster().best_score, 6)
                n_estimators = clf.booster().best_ntree_limit
            else:
                abc += 1
                xgb_options = clf.get_xgb_params()
                xgb_options['num_class'] = n_places + 1
                train_dmatrix = DMatrix(X, label=y)

                #some of the classes have less than n_folds, cannot use stratified KFold
                #folds = StratifiedKFold(y, n_folds=n_folds, shuffle=True)
                folds = KFold(len(y), n_folds=n_folds, shuffle=True)
                cv_results = cv(xgb_options, train_dmatrix, clf.n_estimators, early_stopping_rounds=early_stopping_rounds, verbose_eval=10 if one_cell == 1 else False, show_stdv=False, folds=folds, feval=calculate_score)

                n_estimators = cv_results.shape[0]
                score = round(1 - cv_results.values[-1][0], 6)
                std = round(cv_results.values[-1][1], 6)
        else:
            n_estimators = n_estimators_fixed

        clf = XGBClassifier(max_depth=max_depth, learning_rate=learning_rate, n_estimators=n_estimators, objective='multi:softprob', subsample=ss, colsample_bytree=cs, gamma=gamma, min_child_weight=min_child_weight, reg_lambda=reg_lambda, reg_alpha=reg_alpha)
    else:
        clf = RandomForestClassifier(n_estimators = 300, n_jobs = -1)
        if rf_calculate_score == True:
            if train_test == 1:
                X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
                y_train2 = le.transform(y_train)
                y_test2 = le.transform(y_test)
    
                clf.fit(X_train, y_train2)
                y_predict = clf.predict_proba(X_test)

                scores_local = []
                for i in range(X_test.shape[0]):
#.........這裏部分代碼省略.........
開發者ID:mircean,項目名稱:ML,代碼行數:103,代碼來源:test1.py

示例2: XGBClassifier

# 需要導入模塊: from xgboost.sklearn import XGBClassifier [as 別名]
# 或者: from xgboost.sklearn.XGBClassifier import get_xgb_params [as 別名]
train.drop(x, axis=1, inplace=True)
test.drop(x, axis=1, inplace=True)

y_train = train['TARGET'].values
X_train = train.drop(['ID','TARGET'], axis=1).values

y_test = test['ID']
X_test = test.drop(['ID'], axis=1).values

xgb1 = XGBClassifier(
 learning_rate =0.1,
 n_estimators=600,
 max_depth=5,
 min_child_weight=1,
 gamma=0,
 subsample=0.6815,
 colsample_bytree=0.701,
 objective= 'binary:logistic',
 nthread=4,
 scale_pos_weight=1,
 seed=27)

xgtrain = xgb.DMatrix(X_train, label=y_train)
cvresult = xgb.cv(xgb1.get_xgb_params(), xgtrain, num_boost_round=xgb1.get_params()['n_estimators'], nfold=5,
metrics=['auc'], early_stopping_rounds=50, show_progress=False)
xgb1.set_params(n_estimators=cvresult.shape[0])
xgb1.fit(X_train, y_train, eval_metric='auc')
output = xgb1.predict_proba(X_test)[:,1]

submission = pd.DataFrame({"ID":y_test, "TARGET":output})
submission.to_csv("submission.csv", index=False)
開發者ID:rakeshshenoy,項目名稱:Santander-Customer-Satisfaction,代碼行數:33,代碼來源:script.py


注:本文中的xgboost.sklearn.XGBClassifier.get_xgb_params方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。