當前位置: 首頁>>代碼示例>>Python>>正文


Python Filter.set_property方法代碼示例

本文整理匯總了Python中weka.filters.Filter.set_property方法的典型用法代碼示例。如果您正苦於以下問題:Python Filter.set_property方法的具體用法?Python Filter.set_property怎麽用?Python Filter.set_property使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在weka.filters.Filter的用法示例。


在下文中一共展示了Filter.set_property方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: use_filter

# 需要導入模塊: from weka.filters import Filter [as 別名]
# 或者: from weka.filters.Filter import set_property [as 別名]
def use_filter(data):
    """
    Uses the AttributeSelection filter for attribute selection.
    :param data: the dataset to use
    :type data: Instances
    """
    print("\n2. Filter")
    flter = Filter(classname="weka.filters.supervised.attribute.AttributeSelection")
    aseval = ASEvaluation(classname="weka.attributeSelection.CfsSubsetEval")
    assearch = ASSearch(classname="weka.attributeSelection.GreedyStepwise", options=["-B"])
    flter.set_property("evaluator", aseval.jobject)
    flter.set_property("search", assearch.jobject)
    flter.inputformat(data)
    filtered = flter.filter(data)
    print(str(filtered))
開發者ID:keypointt,項目名稱:python-weka-wrapper-examples,代碼行數:17,代碼來源:attribute_selection_test.py

示例2: main

# 需要導入模塊: from weka.filters import Filter [as 別名]
# 或者: from weka.filters.Filter import set_property [as 別名]
def main():
    """
    Just runs some example code.
    """

    # load a dataset
    data_file = helper.get_data_dir() + os.sep + "vote.arff"
    helper.print_info("Loading dataset: " + data_file)
    loader = Loader("weka.core.converters.ArffLoader")
    data = loader.load_file(data_file)
    data.class_is_last()

    # classifier
    classifier = Classifier(classname="weka.classifiers.trees.J48")

    # randomize data
    folds = 10
    seed = 1
    rnd = Random(seed)
    rand_data = Instances.copy_instances(data)
    rand_data.randomize(rnd)
    if rand_data.class_attribute.is_nominal:
        rand_data.stratify(folds)

    # perform cross-validation and add predictions
    predicted_data = None
    evaluation = Evaluation(rand_data)
    for i in xrange(folds):
        train = rand_data.train_cv(folds, i)
        # the above code is used by the StratifiedRemoveFolds filter,
        # the following code is used by the Explorer/Experimenter
        # train = rand_data.train_cv(folds, i, rnd)
        test = rand_data.test_cv(folds, i)

        # build and evaluate classifier
        cls = Classifier.make_copy(classifier)
        cls.build_classifier(train)
        evaluation.test_model(cls, test)

        # add predictions
        addcls = Filter(
            classname="weka.filters.supervised.attribute.AddClassification",
            options=["-classification", "-distribution", "-error"])
        # setting the java object directory avoids issues with correct quoting in option array
        addcls.set_property("classifier", Classifier.make_copy(classifier))
        addcls.inputformat(train)
        addcls.filter(train)  # trains the classifier
        pred = addcls.filter(test)
        if predicted_data is None:
            predicted_data = Instances.template_instances(pred, 0)
        for n in xrange(pred.num_instances):
            predicted_data.add_instance(pred.get_instance(n))

    print("")
    print("=== Setup ===")
    print("Classifier: " + classifier.to_commandline())
    print("Dataset: " + data.relationname)
    print("Folds: " + str(folds))
    print("Seed: " + str(seed))
    print("")
    print(evaluation.summary("=== " + str(folds) + " -fold Cross-Validation ==="))
    print("")
    print(predicted_data)
開發者ID:fracpete,項目名稱:python-weka-wrapper-examples,代碼行數:65,代碼來源:crossvalidation_addprediction.py


注:本文中的weka.filters.Filter.set_property方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。