本文整理匯總了Python中util.Stack.append方法的典型用法代碼示例。如果您正苦於以下問題:Python Stack.append方法的具體用法?Python Stack.append怎麽用?Python Stack.append使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類util.Stack
的用法示例。
在下文中一共展示了Stack.append方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: postorder_traverse_3
# 需要導入模塊: from util import Stack [as 別名]
# 或者: from util.Stack import append [as 別名]
def postorder_traverse_3(root):
"""postorder_traverse_3
algorithm:
push/pop node to stack according to current node's state
"""
ns = [root, VISIT_LEFT] #(node, state)
stack = Stack([], debug=True)
while ns or stack:
while ns:
stack.append(ns)
node, state = ns
#ns[1] == VISIT_LEFT
ns[1] = VISIT_RIGHT
if node.left:
ns = [node.left, VISIT_LEFT]
else:
ns = None
ns = stack[-1]
if ns[1] == VISIT_RIGHT:
ns[1] = VISIT_SELF
if ns[0].right:
ns = [ns[0].right, VISIT_LEFT]
else:
ns = None
elif ns[1] == VISIT_SELF:
yield ns[0]
stack.pop()
ns = None
示例2: postorder_traverse_4
# 需要導入模塊: from util import Stack [as 別名]
# 或者: from util.Stack import append [as 別名]
def postorder_traverse_4(root):
"""postorder_traverse_4
algorithm:
improve postorder_traverse_3 based on the fact that if last visited
node is current node's right child, then current node should be popped up
"""
stack = Stack([], debug=True)
node = root
last_visited = None
while True:
# push
while node:
stack.append(node)
node = node.left
if not stack: break
# top/pop
node = stack[-1]
if not node.right or node.right == last_visited:
node = stack.pop()
yield node
last_visited = node
# prepare next
node = None
else:
# prepare next
node = node.right
示例3: find_immediate_common_ancestor_2
# 需要導入模塊: from util import Stack [as 別名]
# 或者: from util.Stack import append [as 別名]
def find_immediate_common_ancestor_2(root, value1, value2):
"""find_immediate_common_ancestor_2
algorithm:
in post-order, the stack holds all the parent node
when find the first value, the parent list only shrink on the
road to find the 2nd value.
"""
p, last_visited, immediate_ancestor = root, None, None
#stack = Stack([], debug=True)
stack = Stack([])
while p or stack:
while p:
stack.append(p)
p = p.left
p = stack[-1]
if not p.right or p.right == last_visited:
stack.pop()
#^#
if p.value in (value1, value2):
if not immediate_ancestor:
immediate_ancestor = stack[-1]
else:
return immediate_ancestor.value
if p == immediate_ancestor:
if stack:
immediate_ancestor = stack[-1]
#$#
last_visited = p
p = None
else:
p = p.right
示例4: find_immediate_common_ancestor_5
# 需要導入模塊: from util import Stack [as 別名]
# 或者: from util.Stack import append [as 別名]
def find_immediate_common_ancestor_5(root, value1, value2):
"""find_immediate_common_ancestor_5
algorithm:
pre-order traversal with value for each level
"""
if not root:
return
ancestor, immediate_ancestor_level = {}, -1
stack = Stack([(root, 0)])
while stack:
p, level = stack.pop()
#^#
ancestor[level] = p
if p.value in (value1, value2):
if immediate_ancestor_level == -1:
immediate_ancestor_level = level - 1
else:
return ancestor[immediate_ancestor_level].value
if immediate_ancestor_level > level - 1:
immediate_ancestor_level = level - 1
#$#
if p.right:
stack.append((p.right, level+1))
if p.left:
stack.append((p.left, level+1))
示例5: postorder_traverse
# 需要導入模塊: from util import Stack [as 別名]
# 或者: from util.Stack import append [as 別名]
def postorder_traverse(root):
"""postorder_traverse
algorithm:
postorder (left, right, root) is the reverse of (root, right, left)
"""
stack = Stack([root], debug=True)
while stack:
p = stack.pop()
yield p
if p.left: stack.append(p.left)
if p.right: stack.append(p.right)
示例6: preorder_traverse
# 需要導入模塊: from util import Stack [as 別名]
# 或者: from util.Stack import append [as 別名]
def preorder_traverse(root):
"""preorder traversal
"""
stack = Stack([root], debug=True)
while stack:
node = stack.pop()
yield node
if node.right:
stack.append(node.right)
if node.left:
stack.append(node.left)
示例7: find_nodes_with_sum
# 需要導入模塊: from util import Stack [as 別名]
# 或者: from util.Stack import append [as 別名]
def find_nodes_with_sum(root, _sum):
"""find 2 nodes that their sum is _sum in a binary search tree.
algorithm:
basically 2 pointer for the left and right side of the list and move
it closer based on the sum of the 2 nodes.
"""
#stack1 = Stack([], name="ascend ", debug=True)
stack1 = Stack([], name="ascend ")
#stack2 = Stack([], name="descend", debug=True)
stack2 = Stack([], name="descend")
p1 = p2 = root
while (p1 or stack1) and (p2 or stack2):
while p1:
stack1.append(p1)
p1 = p1.left
while p2:
stack2.append(p2)
p2 = p2.right
p1 = stack1[-1]
p2 = stack2[-1]
if p1 == p2: #same node
stack2.pop()
p2 = p2.left
p1 = None
continue
if p1.value + p2.value > _sum:
stack2.pop()
p2 = p2.left
p1 = None
elif p1.value + p2.value < _sum:
stack1.pop()
p1 = p1.right
p2 = None
else:
return (p1.value, p2.value)
示例8: find_immediate_common_ancestor
# 需要導入模塊: from util import Stack [as 別名]
# 或者: from util.Stack import append [as 別名]
def find_immediate_common_ancestor(root, value1, value2):
"""find_immediate_common_ancestor
algorithm:
in post-order, the stack holds all the ancestor node.
record the 2 ancestor lists and compare them.
"""
p = root
#stack = Stack([], debug=True)
stack = Stack([])
last_visited = None
count_found = 0
while p or stack:
while p:
stack.append(p)
p = p.left
p = stack[-1]
if not p.right or p.right == last_visited:
stack.pop()
#^#
if p.value in (value1, value2):
count_found += 1
if count_found == 1:
parent_stack1 = stack[:]
elif count_found == 2:
common_idx = -1
min_len = len(stack) < len(parent_stack1) and len(stack) or len(parent_stack1)
idx = 0
while idx < min_len:
if stack[idx] == parent_stack1[idx]:
common_idx = idx
idx += 1
else:
break
return stack[common_idx].value
#$#
last_visited = p
p = None
else:
p = p.right
示例9: inorder_traverse
# 需要導入模塊: from util import Stack [as 別名]
# 或者: from util.Stack import append [as 別名]
def inorder_traverse(root):
"""inorder traversal
"""
stack = Stack([], debug=True)
node = root
while True:
# push
while node:
stack.append(node)
node = node.left
if len(stack) == 0: break
# pop
node = stack.pop()
yield node
# next
node = node.right
示例10: postorder_traverse_2
# 需要導入模塊: from util import Stack [as 別名]
# 或者: from util.Stack import append [as 別名]
def postorder_traverse_2(root):
"""postorder_traverse_2
algorithm:
improve postorder_traverse by using 2 stacks and make the output in the rite order.
"""
stack1, stack2 = Stack([], debug=True), Stack([])
stack1.append(root)
while stack1:
p = stack1.pop()
stack2.append(p)
if p.left: stack1.append(p.left)
if p.right: stack1.append(p.right)
while stack2:
p = stack2.pop()
yield p
示例11: reconstruct_tree_2
# 需要導入模塊: from util import Stack [as 別名]
# 或者: from util.Stack import append [as 別名]
def reconstruct_tree_2(preorder, inorder):
"""reconstruct_tree_2
@param: preorder traversal list
@param: inorder traversal list
@return: root node
algorithm:
nonrecursive
"""
cur_pre_idx, pre_pre_idx = 0, -1
#stack = Stack([], debug = True)
stack = Stack([])
while cur_pre_idx < len(preorder) or stack:
if cur_pre_idx != pre_pre_idx:
value = preorder[cur_pre_idx]
#node
node = Node(None, None, value)
#split scheme
idx = inorder.index(value)
if stack:
parent_range = stack[-1][1]
parent_operation = stack[-1][2]
else:
parent_range = (0, len(inorder), -1)
parent_operation = VISIT_LEFT
if parent_operation == VISIT_LEFT:
_range = (parent_range[0], idx, parent_range[1])
else:
_range = (parent_range[1], idx, parent_range[2])
#current operation
operation = VISIT_LEFT
#push
stack.append([ node, _range, operation])
pre_pre_idx = cur_pre_idx
#check next value and continue build the stack
if cur_pre_idx < len(preorder) -1:
next_value = preorder[cur_pre_idx + 1]
next_in_idx = inorder.index(next_value)
else:
next_value = None
next_in_idx = -1
node, _range, operation = stack[-1]
if operation == VISIT_LEFT and _range[0] <= next_in_idx < _range[1]:
cur_pre_idx += 1
continue
elif operation == VISIT_RIGHT and _range[1] <= next_in_idx < _range[2]:
cur_pre_idx += 1
continue
r = stack.pop()
if not stack:
return r[0]
if stack[-1][2] == VISIT_LEFT:
stack[-1][0].left = r[0]
stack[-1][2] = VISIT_RIGHT
elif stack[-1][2] == VISIT_RIGHT:
stack[-1][0].right = r[0]
stack[-1][2] = VISIT_SELF