本文整理匯總了Python中util.ElementHelper.element_text_content方法的典型用法代碼示例。如果您正苦於以下問題:Python ElementHelper.element_text_content方法的具體用法?Python ElementHelper.element_text_content怎麽用?Python ElementHelper.element_text_content使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類util.ElementHelper
的用法示例。
在下文中一共展示了ElementHelper.element_text_content方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: clean_body
# 需要導入模塊: from util import ElementHelper [as 別名]
# 或者: from util.ElementHelper import element_text_content [as 別名]
def clean_body(clusters, doctree, title_node=None, debug = False):
#filter user comments and all link records
clusters = filter_cluster(clusters)
if len(clusters) == 0:
title = ElementHelper.element_text_content(title_node)
return title, title
#choose cluster which has most texts
maxCluster = get_biggest_cluster(clusters)
nodes = clusters[maxCluster]
# m = {}
# m[maxCluster] = nodes
# filter_cluster(m)
#get all children of max cluster record
allnodes = []
for node in nodes:
children = ElementHelper.get_children(node)
allnodes.extend(children)
#sort max cluster nodes by its preorder index
allnodes.sort(lambda p,q:ElementHelper.get_element_preorder_num(p)-ElementHelper.get_element_preorder_num(q))
# debug=True
if debug:
print 'maxCluster: %s' % maxCluster
for n in allnodes:
print ElementHelper.get_xpath_by_element(n, doctree), n.get(py)
s = ElementHelper.get_element_preorder_num(allnodes[0])
t = ElementHelper.get_element_preorder_num(allnodes[-1])
#correct start position by title node
title_text = ''
#====================================================================
#在實驗時借助title糾正正文文本的起始位置可以提高recall,但是實際過程中不需要
if title_node is not None:
index = ElementHelper.get_element_preorder_num(title_node)
if index < s:
s = index #ToDo:add 2016/03/09
title_text = ElementHelper.element_text_content(title_node)
#====================================================================
body = ElementHelper.get_body(doctree)
# remove nodes which not belong to main text
set_text_mark(body, s, t)
remove_nontext_element(body)
return body, title_text
示例2: get_title_util
# 需要導入模塊: from util import ElementHelper [as 別名]
# 或者: from util.ElementHelper import element_text_content [as 別名]
def get_title_util(body, title_text):
if len(title_text) < 2:
return None
#1.計算節點文本與title_text的longest commen lenght
candidate_nodes = []
for tag in TITLE_TAG:
nodes = ElementHelper.get_element_by_tag(body, tag)
if nodes is None or len(nodes)<1: continue
nodes = [node for node in nodes if is_possible_title_tag(node)]
candidate_nodes.extend(nodes)
mapping = {}
for node in candidate_nodes:
node_text = ElementHelper.element_text_content(node)
# if len(node_text)==0 or len(node_text)>len(title_text): continue #
if len(node_text)==0: continue
llength = longest_common_length(node_text, title_text)
if llength >= 1:
mapping[node] = llength
if len(mapping)==0: return None
#2.選擇長度最大的作為title節點,如果存在多個最大的,選擇最靠前的作為
#title節點
sorted_nodes = [node for node, _ in sorted(mapping.items(), key=lambda x:x[1], reverse=True)]
max_len = mapping[sorted_nodes[0]]
candidates = [node for node in sorted_nodes if mapping[node]==max_len]
if len(candidate_nodes)==1:
return sorted_nodes[0]
else:
candidates.sort(cmp=lambda x,y: ElementHelper.get_element_preorder_num(x)- ElementHelper.get_element_preorder_num(y), reverse=False)
return candidates[0]
示例3: get_aricle_cetd
# 需要導入模塊: from util import ElementHelper [as 別名]
# 或者: from util.ElementHelper import element_text_content [as 別名]
def get_aricle_cetd(doctree):
cetd_parse(doctree)
body = ElementHelper.get_body(doctree)
# ElementHelper.print_element(body)
CleanTreeByMark(body)
RemoveAttribute(body)
return ElementHelper.element_text_content(body)
示例4: get_article_wish
# 需要導入模塊: from util import ElementHelper [as 別名]
# 或者: from util.ElementHelper import element_text_content [as 別名]
def get_article_wish(clusters, doctree, title_node=None, debug = False):
#filter
clusters = filter_cluster(clusters)
if len(clusters) == 0:
return ElementHelper.element_text_content(title_node)
maxCluster = get_biggest_cluster(clusters)
nodes = clusters[maxCluster]
m = {}
m[maxCluster] = nodes
filter_cluster(m)
#============================================
if debug:
# for test
print 'maxCluster: %s' %maxCluster
for n in nodes:
print ElementHelper.get_xpath_by_element(n, doctree)
allnodes = []
for node in nodes:
children = ElementHelper.get_children(node)
allnodes.extend(children)
allnodes.sort(lambda p,q:ElementHelper.get_element_preorder_num(p)-ElementHelper.get_element_preorder_num(q))
s = ElementHelper.get_element_preorder_num(allnodes[0])
t = ElementHelper.get_element_preorder_num(allnodes[-1])
title_text = ''
if title_node is not None:
index = ElementHelper.get_element_preorder_num(title_node)
if index < s:
s = index
title_text = ElementHelper.element_text_content(title_node)
body = ElementHelper.get_body(doctree)
set_text_mark(body, s, t)
remove_nontext_element(body)
# ElementHelper.print_element(body)
return ElementHelper.element_text_content_list(body), title_text
示例5: get_headline_content_in_cleaned_body
# 需要導入模塊: from util import ElementHelper [as 別名]
# 或者: from util.ElementHelper import element_text_content [as 別名]
def get_headline_content_in_cleaned_body(body):
headlin_tag = ['h1', 'h2', 'h3', 'h4']
headline_contents = [ElementHelper.element_text_content(node)
for node in ElementHelper.get_elements_by_tagnames(body, headlin_tag)
if not ElementHelper.is_element_content_none(node)]
return '\n'.join(headline_contents)
示例6: ComputeDensitySum
# 需要導入模塊: from util import ElementHelper [as 別名]
# 或者: from util.ElementHelper import element_text_content [as 別名]
def ComputeDensitySum(element, ratio):
density_sum, char_num_sum = 0.0, 0
_from, index, length = 0, 0, 0
content = ElementHelper.element_text_content(element)
if ElementHelper.is_element_has_child(element):
for child in element:
ComputeDensitySum(child, ratio)
for child in element:
density_sum += float(child.attrib.get(kg_text_density))
char_num_sum += long(child.attrib.get(kg_char_num))
#text before tag
child_content = ElementHelper.element_text_content(child)
index = -1
if child_content != '':
index = StringHelper.index_of(content, child_content, _from)
if index > -1:
length = index - _from
if length > 0:
try:
tmp = length * qLn(1.0 * length) / qLn(qLn(ratio * length + qExp(1.0))) #此處的計算結果都為0
density_sum += tmp
except ZeroDivisionError:
pass
_from = index + len(child_content)
#text after tag
length = len(ElementHelper.element_text_content(element)) - _from
if length>0:
try:
density_sum += length * qLn(1.0 * length) / qLn(qLn(ratio * length + qExp(1.0)))
except ZeroDivisionError:
pass
else:
density_sum = float(element.attrib.get(kg_text_density))
d2s_density_sum = str(density_sum)
element.set(kg_density_sum, d2s_density_sum)
示例7: get_article
# 需要導入模塊: from util import ElementHelper [as 別名]
# 或者: from util.ElementHelper import element_text_content [as 別名]
def get_article(doctree, debug = False):
w = WISH()
title = HtmlHelper.get_article_title_element(doctree)
clusters = w.get_clustered_records(doctree)
if debug:
w.print_cluster_record(clusters, doctree)
articles, title_text = get_article_wish(clusters, doctree, title, debug)
if title_text is None or len(title_text)==0:
title_text = ElementHelper.element_text_content(HtmlHelper.get_title(doctree))
return articles, title_text
示例8: is_cluster_contain_user_comments
# 需要導入模塊: from util import ElementHelper [as 別名]
# 或者: from util.ElementHelper import element_text_content [as 別名]
def is_cluster_contain_user_comments(cluster):
""" identify whether element or its children contain comment content, only consider <a> tag
1.each node in cluster, at least has 3 children
2.there is at least one <a> tag has same text
"""
# can not identify
if len(cluster) < 2: return False
text_number_mapping = {}
#at least have three children contain text
for node in cluster:
children = ElementHelper.get_children(node)
link_nodes_contain_text = [n for n in children if is_link_node_with_text(n)]
non_link_nodes_contain_text = [n for n in children if is_none_link_node_with_text(n)]
if len(link_nodes_contain_text)<3: return False
if len(non_link_nodes_contain_text)<2: return False
for n in link_nodes_contain_text:
text = ElementHelper.element_text_content(n)
if text in text_number_mapping:
text_number_mapping[text] += 1
else:
text_number_mapping[text] = 1
#去除標點符號,出數字,空的文本
tmp = copy.deepcopy(text_number_mapping)
for text in tmp:
if len(text)==0 or StringHelper.is_digits(text) :
del text_number_mapping[text]
text_number = text_number_mapping.values()
# FOR TEST
# for text, number in node_text_mapping.items():
# print text,':', number
text_number_counter = collections.Counter(text_number).most_common()
for number, counter in text_number_counter:
if number > 1 and number==len(cluster) and counter>=2: #ToDo 2016/03/08 old:counter>=2 --> new:counter>=1
print 'find comment!'
return True
return False
示例9: get_link_word_by_pair
# 需要導入模塊: from util import ElementHelper [as 別名]
# 或者: from util.ElementHelper import element_text_content [as 別名]
def get_link_word_by_pair(docstring, base_url, supervisior=None, encoding='utf-8'):
""" collect urls from
:param html:
:param base_url:
:return:
"""
h = HtmlHelper()
doctree = h.create_doc(docstring, encoding)
if isinstance(base_url, unicode):
base_url = base_url.encode('utf-8')
a_tags = ElementHelper.get_elements_by_tagnames(doctree, 'a')
for a in a_tags:
link = a.get('href',None)
link = a.get('href',None)
link = m_strip(link)
if link is None or len(link)<2:continue
if link[0]=='#': continue #link to itself
link = normalize_url(link, base_url)
#if url in non visited set
if is_url_visited(link, unvisited_url_set):
continue
# if not should_collect_url(link, base_url):
# continue
link_item = UrlItem()
link_item['parent_url'] = base_url
link_item['url'] = link
link_item['anchor_text'] = ElementHelper.element_text_content(a).encode('utf-8')
link_item['neigb_text'] = ''
if supervisior is not None:
link_item['label'], link_item['interestness'] = supervisior.predict(link_item['anchor_text'])
else:
link_item['label'], link_item['interestness'] = '1', 0.0 #1為負樣本
yield link_item
示例10: CountChar
# 需要導入模塊: from util import ElementHelper [as 別名]
# 或者: from util.ElementHelper import element_text_content [as 別名]
def CountChar(element):
char_num = len(ElementHelper.element_text_content(element))
l2s_char_num = str(char_num)
element.set(kg_char_num, l2s_char_num)
for child in element:
CountChar(child)