本文整理匯總了Python中urbansim.datasets.household_dataset.HouseholdDataset.size方法的典型用法代碼示例。如果您正苦於以下問題:Python HouseholdDataset.size方法的具體用法?Python HouseholdDataset.size怎麽用?Python HouseholdDataset.size使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類urbansim.datasets.household_dataset.HouseholdDataset
的用法示例。
在下文中一共展示了HouseholdDataset.size方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_same_distribution_after_household_subtraction
# 需要導入模塊: from urbansim.datasets.household_dataset import HouseholdDataset [as 別名]
# 或者: from urbansim.datasets.household_dataset.HouseholdDataset import size [as 別名]
def test_same_distribution_after_household_subtraction(self):
"""Using the control_totals and no marginal characteristics,
subtract households and ensure that the distribution within each group stays the same
"""
annual_household_control_totals_data = {
"year": array([2000]),
"total_number_of_households": array([20000])
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=self.households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what="household", id_name="year")
storage.write_table(table_name='hc_set', table_data=self.household_characteristics_for_ht_data)
hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
model = HouseholdTransitionModel()
model.run(year=2000, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
#check that there are indeed 20000 total households after running the model
results = hh_set.size()
should_be = [20000]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the distribution of households in each group is the same as before running the model
results = self.get_count_all_groups(hh_set)
should_be = [6000.0/33000.0*20000.0, 2000.0/33000.0*20000.0, 3000.0/33000.0*20000.0, 4000.0/33000.0*20000.0,
2000.0/33000.0*20000.0, 5000.0/33000.0*20000.0, 3000.0/33000.0*20000.0, 8000.0/33000.0*20000.0]
self.assertEqual(ma.allclose(results, should_be, rtol=0.05),
True, "Error, should_be: %s,\n but result: %s" % (should_be, results))
示例2: test_controlling_with_three_marginal_characteristics
# 需要導入模塊: from urbansim.datasets.household_dataset import HouseholdDataset [as 別名]
# 或者: from urbansim.datasets.household_dataset.HouseholdDataset import size [as 別名]
def test_controlling_with_three_marginal_characteristics(self):
"""Controlling with all three possible marginal characteristics in this example, age_of_head, income, and persons,
this would partition the 8 groups into the same 8 groups, and with a control total specified for each group, we must
ensure that the control totals for each group exactly meet the specifications.
"""
#IMPORTANT: marginal characteristics grouping indices have to start at 0!
annual_household_control_totals_data = {
"year": array(8*[2000]),
#"age_of_head": array(4*[0] + 4*[1]),
"age_of_head_min": array([ 0, 0, 0, 0, 50, 50, 50, 50]),
"age_of_head_max": array([49,49,49,49,100,100,100,100]),
#"income": array(2*[0] + 2*[1] + 2*[0] + 2*[1]),
"income_min": array([ 0, 0,40000,40000, 0, 0,40000,40000]),
"income_max": array([39999,39999, -1, -1,39999,39999, -1, -1]),
#"persons": array([0,1,0,1,0,1,0,1]),
"persons_min": array([0, 3,0, 3,0, 3,0, 3]),
"persons_max": array([2,-1,2,-1,2,-1,2,-1]),
"total_number_of_households": array([4000, 5000, 1000, 3000, 0, 6000, 3000, 8000])
}
##size of columns was not even, removed last element of min and max
#household_characteristics_for_ht_data = {
#"characteristic": array(2*['age_of_head'] + 2*['income'] + 2*['persons']),
#"min": array([0, 50, 0, 40000, 0, 3]),
#"max": array([49, 100, 39999, -1, 2, -1])
#}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=self.households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what='household', id_name=[])
#storage.write_table(table_name='hc_set', table_data=household_characteristics_for_ht_data)
#hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
# unplace some households
where10 = where(hh_set.get_attribute("grid_id")<>10)[0]
hh_set.modify_attribute(name="grid_id", data=zeros(where10.size), index=where10)
model = TransitionModel(hh_set, control_total_dataset=hct_set)
model.run(year=2000, target_attribute_name="total_number_of_households", reset_dataset_attribute_value={'grid_id':-1})
#check that there are indeed 33000 total households after running the model
results = hh_set.size()
should_be = [30000]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the number of households in each group exactly match the control totals specified
results = self.get_count_all_groups(hh_set)
should_be = [4000, 5000, 1000, 3000, 0, 6000, 3000, 8000]
self.assertEqual(ma.allclose(results, should_be),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
示例3: create_households_for_estimation
# 需要導入模塊: from urbansim.datasets.household_dataset import HouseholdDataset [as 別名]
# 或者: from urbansim.datasets.household_dataset.HouseholdDataset import size [as 別名]
def create_households_for_estimation(agent_set, dbcon):
estimation_set = HouseholdDataset(in_storage=StorageFactory().get_storage('mysql_storage', storage_location=dbcon),
in_table_name="households_for_estimation")
agent_set.unload_primary_attributes()
agent_set.load_dataset(attributes='*')
estimation_set.load_dataset(attributes=agent_set.get_primary_attribute_names())
for attr in agent_set.get_attribute_names():
agent_set.attribute_boxes[attr].set_data(concatenate((estimation_set.attribute_boxes[attr].get_data(), agent_set.attribute_boxes[attr].get_data())))
agent_set._update_id_mapping()
agent_set.update_size()
return (agent_set, arange(estimation_set.size()))
示例4: test_controlling_with_one_marginal_characteristic
# 需要導入模塊: from urbansim.datasets.household_dataset import HouseholdDataset [as 別名]
# 或者: from urbansim.datasets.household_dataset.HouseholdDataset import size [as 別名]
def test_controlling_with_one_marginal_characteristic(self):
"""Using the age_of_head as a marginal characteristic, which would partition the 8 groups into two larger groups
(those with age_of_head < 40 and >= 40), ensure that the control totals are met and that the distribution within
each large group is the same before and after running the model
"""
#IMPORTANT: marginal characteristics grouping indices have to start at 0!
#i.e. below, there is one marg. char. "age_of_head". here we indicate that the first "large group" (groups 1-4),
#consisting of those groups with age_of_head < 40 should total 25000 households after running this model for one year,
#and the second large group, those groups with age_of_head > 40, should total 15000 households
annual_household_control_totals_data = {
"year": array([2000, 2000]),
"age_of_head": array([0,1]),
"total_number_of_households": array([25000, 15000])
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=self.households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what='household', id_name=['year' ,'age_of_head'])
storage.write_table(table_name='hc_set', table_data=self.household_characteristics_for_ht_data)
hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
storage.write_table(table_name='prs_set', table_data=self.person_data)
prs_set = PersonDataset(in_storage=storage, in_table_name='prs_set')
model = HouseholdTransitionModel()
model.run(year=2000, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
#check that there are indeed 40000 total households after running the model
results = hh_set.size()
should_be = [40000]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the total number of households within first four groups increased by 10000
#and that the total number of households within last four groups decreased by 3000
results = self.get_count_all_groups(hh_set)
should_be = [25000, 15000]
self.assertEqual(ma.allclose([sum(results[0:4]), sum(results[4:8])], should_be, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the distribution of households within groups 1-4 and 5-8 are the same before and after
#running the model, respectively
should_be = [6000.0/15000.0*25000.0, 2000.0/15000.0*25000.0, 3000.0/15000.0*25000.0, 4000.0/15000.0*25000.0,
2000.0/18000.0*15000.0, 5000.0/18000.0*15000.0, 3000.0/18000.0*15000.0, 8000.0/18000.0*15000.0]
self.assertEqual(ma.allclose(results, should_be, rtol=0.05),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
示例5: test_same_distribution_after_household_addition
# 需要導入模塊: from urbansim.datasets.household_dataset import HouseholdDataset [as 別名]
# 或者: from urbansim.datasets.household_dataset.HouseholdDataset import size [as 別名]
def test_same_distribution_after_household_addition(self):
"""Using the control_totals and no marginal characteristics,
add households and ensure that the distribution within each group stays the same
"""
annual_household_control_totals_data = {
"year": array([2000]),
"total_number_of_households": array([50000])
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=self.households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='prs_set', table_data=self.person_data)
prs_set = PersonDataset(in_storage=storage, in_table_name='prs_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what="household", id_name="year")
storage.write_table(table_name='hc_set', table_data=self.household_characteristics_for_ht_data)
hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
model = HouseholdTransitionModel()
model.run(year=2000, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
#check that there are indeed 50000 total households after running the model
results = hh_set.size()
should_be = [50000]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the number of unplaced households is exactly the number of new households created
results = where(hh_set.get_attribute("building_id")<=0)[0].size
should_be = [17000]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
#check that the distribution of households in each group is the same as before running the model
results = self.get_count_all_groups(hh_set)
should_be = array([6000.0/33000.0*50000.0, 2000.0/33000.0*50000.0, 3000.0/33000.0*50000.0, 4000.0/33000.0*50000.0,
2000.0/33000.0*50000.0, 5000.0/33000.0*50000.0, 3000.0/33000.0*50000.0, 8000.0/33000.0*50000.0])
self.assertEqual(ma.allclose(results, should_be, rtol=0.05),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# check the types of the attributes
self.assertEqual(hh_set.get_attribute("age_of_head").dtype, int32,
"Error in data type of the new household set. Should be: int32, is: %s" % str(hh_set.get_attribute("age_of_head").dtype))
self.assertEqual(hh_set.get_attribute("income").dtype, int32,
"Error in data type of the new household set. Should be: int32, is: %s" % str(hh_set.get_attribute("income").dtype))
self.assertEqual(hh_set.get_attribute("persons").dtype, int8,
"Error in data type of the new household set. Should be: int8, is: %s" % str(hh_set.get_attribute("persons").dtype))
示例6: test_controlling_age_of_head
# 需要導入模塊: from urbansim.datasets.household_dataset import HouseholdDataset [as 別名]
# 或者: from urbansim.datasets.household_dataset.HouseholdDataset import size [as 別名]
def test_controlling_age_of_head(self):
""" Controls for one marginal characteristics, namely age_of_head.
"""
annual_household_control_totals_data = {
"year": array([2000, 2000, 2000, 2001, 2001, 2001, 2002, 2002, 2002]),
"age_of_head": array([0,1,2,0,1,2, 0,1,2]),
"total_number_of_households": array([25013, 21513, 18227, # 2000
10055, 15003, 17999, # 2001
15678, 14001, 20432]) # 2002
}
household_characteristics_for_ht_data = {
"characteristic": array(3*['age_of_head']),
"min": array([0, 35, 65]),
"max": array([34, 64, -1])
}
households_data = {
"household_id":arange(15000)+1,
"building_id": array(15000*[1]),
"age_of_head": array(1000*[25] + 1000*[28] + 2000*[32] + 1000*[34] +
2000*[35] + 1000*[40] + 1000*[54]+ 1000*[62] +
1000*[65] + 1000*[68] + 2000*[71] + 1000*[98]),
"persons": array(1000*[2] + 2000*[3] + 1000*[1] + 1000*[6] + 1000*[1] + 1000*[4] +
3000*[1]+ 5000*[5], dtype=int8)
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what='household',
id_name=['year' ,'age_of_head'])
storage.write_table(table_name='hc_set', table_data=household_characteristics_for_ht_data)
hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
storage.write_table(table_name='prs_set', table_data=self.person_data)
prs_set = PersonDataset(in_storage=storage, in_table_name='prs_set')
model = HouseholdTransitionModel(debuglevel=3)
# this run should add households in all four categories
model.run(year=2000, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[0:3]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(hc_set.size(), dtype=int32)
results[0] = where(hh_set.get_attribute('age_of_head') <= hc_set.get_attribute("max")[0], 1,0).sum()
for i in range(1, hc_set.size()-1):
results[i] = logical_and(where(hh_set.get_attribute('age_of_head') >= hc_set.get_attribute("min")[i], 1,0),
where(hh_set.get_attribute('age_of_head') <= hc_set.get_attribute("max")[i], 1,0)).sum()
results[hc_set.size()-1] = where(hh_set.get_attribute('age_of_head') >= hc_set.get_attribute("min")[hc_set.size()-1], 1,0).sum()
should_be = hct_set.get_attribute("total_number_of_households")[0:3]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should remove households in all four categories
model.run(year=2001, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[3:6]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(hc_set.size(), dtype=int32)
results[0] = where(hh_set.get_attribute('age_of_head') <= hc_set.get_attribute("max")[0], 1,0).sum()
for i in range(1, hc_set.size()-1):
results[i] = logical_and(where(hh_set.get_attribute('age_of_head') >= hc_set.get_attribute("min")[i], 1,0),
where(hh_set.get_attribute('age_of_head') <= hc_set.get_attribute("max")[i], 1,0)).sum()
results[hc_set.size()-1] = where(hh_set.get_attribute('age_of_head') >= hc_set.get_attribute("min")[hc_set.size()-1], 1,0).sum()
should_be = hct_set.get_attribute("total_number_of_households")[3:6]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should add and remove households
model.run(year=2002, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[6:9]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(hc_set.size(), dtype=int32)
results[0] = where(hh_set.get_attribute('age_of_head') <= hc_set.get_attribute("max")[0], 1,0).sum()
for i in range(1, hc_set.size()-1):
results[i] = logical_and(where(hh_set.get_attribute('age_of_head') >= hc_set.get_attribute("min")[i], 1,0),
where(hh_set.get_attribute('age_of_head') <= hc_set.get_attribute("max")[i], 1,0)).sum()
results[hc_set.size()-1] = where(hh_set.get_attribute('age_of_head') >= hc_set.get_attribute("min")[hc_set.size()-1], 1,0).sum()
should_be = hct_set.get_attribute("total_number_of_households")[6:9]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
示例7: test_controlling_income
# 需要導入模塊: from urbansim.datasets.household_dataset import HouseholdDataset [as 別名]
# 或者: from urbansim.datasets.household_dataset.HouseholdDataset import size [as 別名]
def test_controlling_income(self):
""" Controls for one marginal characteristics, namely income.
"""
annual_household_control_totals_data = {
"year": array([2000, 2000, 2000, 2000, 2001, 2001, 2001, 2001, 2002, 2002, 2002, 2002]),
"income": array([0,1,2,3,0,1,2,3, 0,1,2,3]),
"total_number_of_households": array([25013, 21513, 18227, 18493, # 2000
10055, 15003, 17999, 17654, # 2001
15678, 14001, 20432, 14500]) # 2002
}
household_characteristics_for_ht_data = {
"characteristic": array(4*['income']),
"min": array([0, 40000, 120000, 70000]), # category 120000 has index 3 and category 70000 has index 2
"max": array([39999, 69999, -1, 119999]) # (testing row invariance)
}
hc_sorted_index = array([0,1,3,2])
households_data = {
"household_id":arange(20000)+1,
"building_id": array(19950*[1] + 50*[0]),
"income": array(1000*[1000] + 1000*[10000] + 2000*[20000] + 1000*[35000] + 2000*[45000] +
1000*[50000] + 2000*[67000]+ 2000*[90000] + 1000*[100005] + 2000*[110003] +
1000*[120000] + 1000*[200000] + 2000*[500000] + 1000*[630000]),
"persons": array(3000*[2] + 2000*[3] + 1000*[1] + 1000*[6] + 1000*[1] + 1000*[4] +
3000*[1]+ 8000*[5], dtype=int8)
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what='household', id_name=['year' ,'income'])
storage.write_table(table_name='hc_set', table_data=household_characteristics_for_ht_data)
hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
storage.write_table(table_name='prs_set', table_data=self.person_data)
prs_set = PersonDataset(in_storage=storage, in_table_name='prs_set')
model = HouseholdTransitionModel(debuglevel=3)
# this run should add households in all four categories
model.run(year=2000, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
results = hh_set.size()
should_be = [83246]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(hc_set.size(), dtype=int32)
results[0] = where(hh_set.get_attribute('income') <=
hc_set.get_attribute("max")[hc_sorted_index[0]], 1,0).sum()
for i in range(1, hc_set.size()-1):
results[i] = logical_and(where(hh_set.get_attribute('income') >=
hc_set.get_attribute("min")[hc_sorted_index[i]], 1,0),
where(hh_set.get_attribute('income') <=
hc_set.get_attribute("max")[hc_sorted_index[i]], 1,0)).sum()
results[-1] = where(hh_set.get_attribute('income') >= hc_set.get_attribute("min")[hc_sorted_index[-1]], 1,0).sum()
should_be = hct_set.get_attribute("total_number_of_households")[0:4]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should remove households in all four categories
model.run(year=2001, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[4:8]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(hc_set.size(), dtype=int32)
results[0] = where(hh_set.get_attribute('income') <=
hc_set.get_attribute("max")[hc_sorted_index[0]], 1,0).sum()
for i in range(1, hc_set.size()-1):
results[i] = logical_and(where(hh_set.get_attribute('income') >=
hc_set.get_attribute("min")[hc_sorted_index[i]], 1,0),
where(hh_set.get_attribute('income') <=
hc_set.get_attribute("max")[hc_sorted_index[i]], 1,0)).sum()
results[-1] = where(hh_set.get_attribute('income') >= hc_set.get_attribute("min")[hc_sorted_index[-1]], 1,0).sum()
should_be = hct_set.get_attribute("total_number_of_households")[4:8]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should add and remove households
model.run(year=2002, person_set=prs_set, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[8:13]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(hc_set.size(), dtype=int32)
results[0] = where(hh_set.get_attribute('income') <= hc_set.get_attribute("max")[hc_sorted_index[0]], 1,0).sum()
for i in range(1, hc_set.size()-1):
results[i] = logical_and(where(hh_set.get_attribute('income') >=
hc_set.get_attribute("min")[hc_sorted_index[i]], 1,0),
where(hh_set.get_attribute('income') <=
hc_set.get_attribute("max")[hc_sorted_index[i]], 1,0)).sum()
results[-1] = where(hh_set.get_attribute('income') >= hc_set.get_attribute("min")[hc_sorted_index[-1]], 1,0).sum()
should_be = hct_set.get_attribute("total_number_of_households")[8:13]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
示例8: test_controlling_age_of_head
# 需要導入模塊: from urbansim.datasets.household_dataset import HouseholdDataset [as 別名]
# 或者: from urbansim.datasets.household_dataset.HouseholdDataset import size [as 別名]
def test_controlling_age_of_head(self):
""" Controls for one marginal characteristics, namely age_of_head.
"""
annual_household_control_totals_data = {
"year": array([2000, 2000, 2000, 2001, 2001, 2001, 2002, 2002, 2002]),
#"age_of_head": array([0,1,2,0,1,2, 0,1,2]),
"age_of_head_min": array([ 0,35,65, 0,35,65, 0,35,65]),
"age_of_head_max": array([34,64,-1, 34,64,-1, 34,64,-1]),
"total_number_of_households": array([25013, 21513, 18227, # 2000
10055, 15003, 17999, # 2001
15678, 14001, 20432]) # 2002
}
#household_characteristics_for_ht_data = {
#"characteristic": array(3*['age_of_head']),
#"min": array([0, 35, 65]),
#"max": array([34, 64, -1])
#}
households_data = {
"household_id":arange(15000)+1,
"grid_id": array(15000*[1]),
"age_of_head": array(1000*[25] + 1000*[28] + 2000*[32] + 1000*[34] +
2000*[35] + 1000*[40] + 1000*[54]+ 1000*[62] +
1000*[65] + 1000*[68] + 2000*[71] + 1000*[98])
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what='household',
id_name=[])
#storage.write_table(table_name='hc_set', table_data=household_characteristics_for_ht_data)
#hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
model = TransitionModel(hh_set, control_total_dataset=hct_set)
model.run(year=2000, target_attribute_name="total_number_of_households", reset_dataset_attribute_value={'grid_id':-1})
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[0:3]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
cats = 3
results = zeros(cats, dtype=int32)
results[0] = (hh_set.get_attribute('age_of_head') <= hct_set.get_attribute("age_of_head_max")[0]).sum()
for i in range(1, cats-1):
results[i] = logical_and(hh_set.get_attribute('age_of_head') >= hct_set.get_attribute("age_of_head_min")[i],
hh_set.get_attribute('age_of_head') <= hct_set.get_attribute("age_of_head_max")[i]).sum()
results[-1] = (hh_set.get_attribute('age_of_head') >= hct_set.get_attribute("age_of_head_min")[i+1]).sum()
should_be = hct_set.get_attribute("total_number_of_households")[0:3]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should remove households in all four categories
#model.run(year=2001, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
model.run(year=2001, target_attribute_name="total_number_of_households", reset_dataset_attribute_value={'grid_id':-1})
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[3:6]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(cats, dtype=int32)
results[0] = (hh_set.get_attribute('age_of_head') <= hct_set.get_attribute("age_of_head_max")[0]).sum()
for i in range(1, cats-1):
results[i] = logical_and(hh_set.get_attribute('age_of_head') >= hct_set.get_attribute("age_of_head_min")[i+3],
hh_set.get_attribute('age_of_head') <= hct_set.get_attribute("age_of_head_max")[i+3]).sum()
results[-1] = (hh_set.get_attribute('age_of_head') >= hct_set.get_attribute("age_of_head_min")[i+4]).sum()
should_be = hct_set.get_attribute("total_number_of_households")[3:6]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should add and remove households
#model.run(year=2002, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
model.run(year=2002, target_attribute_name="total_number_of_households", reset_dataset_attribute_value={'grid_id':-1})
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[6:9]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(cats, dtype=int32)
results[0] = where(hh_set.get_attribute('age_of_head') <= hct_set.get_attribute("age_of_head_max")[0], 1,0).sum()
for i in range(1, cats-1):
results[i] = logical_and(hh_set.get_attribute('age_of_head') >= hct_set.get_attribute("age_of_head_min")[i+6],
hh_set.get_attribute('age_of_head') <= hct_set.get_attribute("age_of_head_max")[i+6]).sum()
results[-1] = (hh_set.get_attribute('age_of_head') >= hct_set.get_attribute("age_of_head_min")[i+7]).sum()
should_be = hct_set.get_attribute("total_number_of_households")[6:9]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
示例9: test_controlling_income
# 需要導入模塊: from urbansim.datasets.household_dataset import HouseholdDataset [as 別名]
# 或者: from urbansim.datasets.household_dataset.HouseholdDataset import size [as 別名]
def test_controlling_income(self):
""" Controls for one marginal characteristics, namely income.
"""
annual_household_control_totals_data = {
"year": array([2000, 2000, 2000, 2000, 2001, 2001, 2001, 2001, 2002, 2002, 2002, 2002]),
#"income": array([0,1,2,3,0,1,2,3, 0,1,2,3]),
"income_min": array([ 0,40000, 70000,120000, 0,40000, 70000,120000, 0,40000, 70000,120000]),
"income_max": array([39999,69999,119999, -1, 39999,69999,119999, -1, 39999,69999,119999, -1]),
"total_number_of_households": array([25013, 21513, 18227, 18493, # 2000
10055, 15003, 17999, 17654, # 2001
15678, 14001, 20432, 14500]) # 2002
}
#household_characteristics_for_ht_data = {
#"characteristic": array(4*['income']),
#"min": array([0, 40000, 120000, 70000]), # category 120000 has index 3 and category 70000 has index 2
#"max": array([39999, 69999, -1, 119999]) # (testing row invariance)
#}
#hc_sorted_index = array([0,1,3,2])
households_data = {
"household_id":arange(20000)+1,
"grid_id": array(19950*[1] + 50*[0]),
"income": array(1000*[1000] + 1000*[10000] + 2000*[20000] + 1000*[35000] + 2000*[45000] +
1000*[50000] + 2000*[67000]+ 2000*[90000] + 1000*[100005] + 2000*[110003] +
1000*[120000] + 1000*[200000] + 2000*[500000] + 1000*[630000])
}
storage = StorageFactory().get_storage('dict_storage')
storage.write_table(table_name='hh_set', table_data=households_data)
hh_set = HouseholdDataset(in_storage=storage, in_table_name='hh_set')
storage.write_table(table_name='hct_set', table_data=annual_household_control_totals_data)
hct_set = ControlTotalDataset(in_storage=storage, in_table_name='hct_set', what='household', id_name=[])
#storage.write_table(table_name='hc_set', table_data=household_characteristics_for_ht_data)
#hc_set = HouseholdCharacteristicDataset(in_storage=storage, in_table_name='hc_set')
model = TransitionModel(hh_set, control_total_dataset=hct_set)
model.run(year=2000, target_attribute_name="total_number_of_households", reset_dataset_attribute_value={'grid_id':-1})
results = hh_set.size()
should_be = [83246]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
cats = 4
results = zeros(cats, dtype=int32)
results[0] = (hh_set.get_attribute('income') <= hct_set.get_attribute("income_max")[0]).sum()
for i in range(1, cats-1):
results[i] = logical_and(hh_set.get_attribute('income') >= hct_set.get_attribute("income_min")[i],
hh_set.get_attribute('income') <= hct_set.get_attribute("income_max")[i]).sum()
results[-1] = (hh_set.get_attribute('income') >= hct_set.get_attribute("income_min")[i+1]).sum()
should_be = hct_set.get_attribute("total_number_of_households")[0:4]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should remove households in all four categories
#model.run(year=2001, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
model.run(year=2001, target_attribute_name="total_number_of_households", reset_dataset_attribute_value={'grid_id':-1})
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[4:8]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(cats, dtype=int32)
results[0] = (hh_set.get_attribute('income') <= hct_set.get_attribute("income_max")[4]).sum()
for i in range(1, cats-1):
results[i] = logical_and(hh_set.get_attribute('income') >= hct_set.get_attribute("income_min")[i+4],
hh_set.get_attribute('income') <= hct_set.get_attribute("income_max")[i+4]).sum()
results[-1] = (hh_set.get_attribute('income') >= hct_set.get_attribute("income_min")[i+5]).sum()
should_be = hct_set.get_attribute("total_number_of_households")[4:8]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
# this run should add and remove households
#model.run(year=2002, household_set=hh_set, control_totals=hct_set, characteristics=hc_set)
model.run(year=2002, target_attribute_name="total_number_of_households", reset_dataset_attribute_value={'grid_id':-1})
results = hh_set.size()
should_be = [(hct_set.get_attribute("total_number_of_households")[8:12]).sum()]
self.assertEqual(ma.allclose(should_be, results, rtol=1e-1),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
results = zeros(cats, dtype=int32)
results[0] = (hh_set.get_attribute('income') <= hct_set.get_attribute("income_max")[8]).sum()
for i in range(1, cats-1):
results[i] = logical_and(hh_set.get_attribute('income') >= hct_set.get_attribute("income_min")[i+8],
hh_set.get_attribute('income') <= hct_set.get_attribute("income_max")[i+8]).sum()
results[-1] = (hh_set.get_attribute('income') >= hct_set.get_attribute("income_min")[i+9]).sum()
should_be = hct_set.get_attribute("total_number_of_households")[8:12]
self.assertEqual(ma.allclose(results, should_be, rtol=1e-6),
True, "Error, should_be: %s, but result: %s" % (should_be, results))
示例10: HouseholdLocationChoiceModelCreator
# 需要導入模塊: from urbansim.datasets.household_dataset import HouseholdDataset [as 別名]
# 或者: from urbansim.datasets.household_dataset.HouseholdDataset import size [as 別名]
results = hlcm.run(specification, coef, agents)
hlcm.upc_sequence.plot_choice_histograms(
capacity=locations.get_attribute("vacant_units"))
hlcm.upc_sequence.show_plots()
hlcm2 = HouseholdLocationChoiceModelCreator().get_model(
location_set = locations,
sampler=None,
utilities="opus_core.linear_utilities",
probabilities="opus_core.mnl_probabilities",
choices="urbansim.lottery_choices",
compute_capacity_flag=True,
run_config=Resources({"capacity_string":"gridcell.vacant_units"}))
agents.set_values_of_one_attribute("location", -1*ones(agents.size()))
agents.get_attribute("location")
results = hlcm2.run(specification, coefficients, agents)
agents.get_attribute("location")
hlcm2.upc_sequence.plot_choice_histograms(
capacity=locations.get_attribute("vacant_units"))
hlcm2.upc_sequence.show_plots()
coef, results = hlcm2.estimate(specification, agents)
#HLCM on PSRC
# households from PSRC
agents_psrc = HouseholdDataset(in_storage = StorageFactory().get_storage('flt_storage',
storage_location = "/home/hana/bandera/urbansim/data/GPSRC"),
in_table_name = "hh")
agents_psrc.summary()