本文整理匯總了Python中uncertainties.ufloat函數的典型用法代碼示例。如果您正苦於以下問題:Python ufloat函數的具體用法?Python ufloat怎麽用?Python ufloat使用的例子?那麽, 這裏精選的函數代碼示例或許可以為您提供幫助。
在下文中一共展示了ufloat函數的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: getPerformanceOnMC
def getPerformanceOnMC(
files,
histogramForEstimation="QCDStudy/PFIsolation_WithMETCutAndAsymJetCuts_DR03",
bjetBin="",
function="expo",
fitRange=(0.3, 1.6),
additionFitRanges=[(0.2, 1.6), (0.4, 1.6)],
):
if bjetBin:
histogramForEstimation = histogramForEstimation + "_" + bjetBin
hists = [histogramForEstimation]
hists = getHistsFromFiles(hists, files)
hists = addSampleSum(hists)
histogramForComparison = hists["qcd"][histogramForEstimation]
histogramForEstimation = hists["allMC"][histogramForEstimation]
estimate, absoluteError = getQCDEstimateFor(
histogramForEstimation, function, fitRange=fitRange, additionFitRanges=additionFitRanges
)
qcdInSignalRegion, qcdError = getIntegral(histogramForComparison, (0, 0.1))
N_est = ufloat((estimate, absoluteError))
N_qcd = ufloat((qcdInSignalRegion, qcdError))
relativeDeviation = N_est / N_qcd
result = {}
result["performance"] = (relativeDeviation.nominal_value, relativeDeviation.std_dev())
result["estimate"] = (estimate, absoluteError)
result["qcdInSignalRegion"] = (qcdInSignalRegion, qcdError)
return result
示例2: get_vhtt_yield
def get_vhtt_yield(mass):
log.warning("Get VHTT yield %s", mass)
mmt_yield = results_file.Get('mmt_mumu_final_count/VH%i' % mass).Integral()
emt_yield = results_file.Get('emt_emu_final_count/VH%i' % mass).Integral()
_, (mmt_passed, mmt_total) = get_stat_error('VH%i' % mass, mmt_yield)
_, (emt_passed, emt_total) = get_stat_error('VH%i' % mass, emt_yield)
assert(mmt_total == emt_total)
mmt_passed = ufloat( (mmt_passed, math.sqrt(mmt_passed) ))
emt_passed = ufloat( (emt_passed, math.sqrt(emt_passed) ))
total = ufloat( (mmt_total, math.sqrt(mmt_total) ))
all_passed = mmt_passed + emt_passed
log.warning("total %s", total)
log.warning("all %s", all_passed)
#multply by fraction of ZH_WH_ttH that is WH
wh_xsec = ROOT.HiggsCSandWidth().HiggsCS(3, mass, 7)
zh_xsec = ROOT.HiggsCSandWidth().HiggsCS(4, mass, 7)
tth_xsec = ROOT.HiggsCSandWidth().HiggsCS(5, mass, 7)
wh_fraction = wh_xsec/(wh_xsec + zh_xsec + tth_xsec)
log.warning("wh_frac %s", wh_fraction)
br_bonus = 1.0/(0.1075+0.1057+0.1125)
log.warning("br_bonus %s", br_bonus)
return 100*br_bonus*(all_passed/total)/wh_fraction
示例3: split_dat
def split_dat(data):
"""
Takes the row in the form r_n e_r_n ext_n e_ext_n and returns two lists
one with the radii and the other with the extinction values both lists
are of ufloats
Parameters
--------
data : list
A list of floats of the radii and errors and extinctions and
errors.
Returns
--------
rad : list
List of ufloats of the radii.
ext : list
List of ufloats of the extinctions.
"""
rad, ext = [], []
for i in range(0, len(data) - 1, 4):
vec = [data[i], data[i+1], data[i+2], data[i+3]]
if vec[0].strip() != '':
radius = ufloat(vec[0], vec[1])
extinct = ufloat(vec[2], vec[3])
rad.append(radius)
ext.append(extinct)
return ext, rad
示例4: fit_single_line_BS
def fit_single_line_BS(self, x, y, zero_lev, err_continuum, fitting_parameters, bootstrap_iterations = 1000):
#Declare parameters and containers for the fit
params_dict = fitting_parameters.valuesdict()
initial_values = [params_dict['A0'], params_dict['mu0'], params_dict['sigma0']]
area_array = empty(bootstrap_iterations)
params_array = empty([3, bootstrap_iterations])
n_points = len(x)
#Perform the fit
for i in range(bootstrap_iterations):
y_new = y + np_normal_dist(0, err_continuum, n_points)
area_array[i] = simps(y_new, x) - simps(zero_lev, x)
best_vals, covar = curve_fit(gaussian_curveBS, (x, zero_lev), y_new, p0=initial_values, maxfev = 1600)
params_array[:,i] = best_vals
#Compute Bootstrap output
mean_area, std_area = mean(area_array), std(area_array)
mean_params_array, stdev_params_array = params_array.mean(1), params_array.std(1)
#Store the data
self.fit_dict['area_intg'], self.fit_dict['area_intg_er'] = mean_area, std_area
self.fit_dict['A0_norm'], self.fit_dict['A0_norm_er'] = mean_params_array[0], stdev_params_array[0]
self.fit_dict['mu0_norm'], self.fit_dict['mu0_norm_er'] = mean_params_array[1], stdev_params_array[1]
self.fit_dict['sigma0_norm'], self.fit_dict['sigma0_norm_er'] = mean_params_array[2], stdev_params_array[2]
A = ufloat(mean_params_array[0], stdev_params_array[0])
sigma = ufloat(mean_params_array[2], stdev_params_array[2])
fwhm0_norm = 2.354820045 * sigma
areaG0_norm = A * sigma * self.sqrt2pi
self.fit_dict['fwhm0_norm'], self.fit_dict['fwhm0_norm_er'] = fwhm0_norm.nominal_value, fwhm0_norm.std_dev
self.fit_dict['area_G0_norm'], self.fit_dict['area_G0_norm_er'] = areaG0_norm.nominal_value, areaG0_norm.std_dev
return
示例5: line_fit
def line_fit(x, y, errors=True):
"""
Simple helper function that speeds up line fitting. Uses lmfit
Parameters
----------
x, y (float)
Sample length x, y arrays of data to be fitted
Returns
-------
Returns slope and intercept, with uncertainties (use uncertainties package if availabe)
Also returns fit object out, can be dropped
"""
from lmfit.models import LinearModel
mod = LinearModel()
par = mod.guess(y, x=x)
out = mod.fit(y, par, x=x)
s = out.params['slope']
i = out.params['intercept']
if errors:
try:
from uncertainties import ufloat
return ufloat(s.value, s.stderr), ufloat(i.value, i.stderr), out
except:
return s.value, s.stderr, i.value, i.stderr, out
else:
return s.value, i.value, out
示例6: calculate_latencies
def calculate_latencies(version_dates):
linux_latencies = latency(version_dates['linux'], OrderedDict(avo.os_to_kernel))
set_latex_value('linuxMeanUpdateLatency', ufloat(statistics.mean(linux_latencies.values()),statistics.stdev(linux_latencies.values())))
openssl_latencies = latency(version_dates['openssl'], OrderedDict(avo.os_to_project['openssl']))
set_latex_value('opensslMeanUpdateLatency', ufloat(statistics.mean(openssl_latencies.values()),statistics.stdev(openssl_latencies.values())))
bouncycastle_latencies = latency(version_dates['bouncycastle'], OrderedDict(avo.os_to_project['bouncycastle']))
set_latex_value('bouncycastleMeanUpdateLatency',ufloat(statistics.mean(bouncycastle_latencies.values()),statistics.stdev(bouncycastle_latencies.values())))
示例7: combine_complex_df
def combine_complex_df( df1, df2 ):
'''
Takes a 2 pandii dataframes of the form:
A | B A | B
(v,e) | (v,e) (v,e) | (v,e)
Returns 1 pandas dataframe of the form
A | B
(v,e) | (v,e)
'''
from uncertainties import ufloat
l1=df1.columns.tolist()
l2=df2.columns.tolist()
if l1 != l2:
print "Trying to combine two non compatible dataframes"
print l1
print l2
return
combined_result = {}
for sample in l1:
results = []
for entry1, entry2 in zip(df1[sample], df2[sample]):
v1 = ufloat(entry1[0], entry1[1])
v2 = ufloat(entry2[0], entry2[1])
s = v1 + v2
results.append( ( s.nominal_value, s.std_dev ) )
combined_result[sample] = results
df = dict_to_df(combined_result)
return df
示例8: calculate_flux
def calculate_flux(f, age, arar_constants=None):
"""
#rad40: radiogenic 40Ar
#k39: 39Ar from potassium
f: F value rad40Ar/39Ar
age: age of monitor in years
solve age equation for J
"""
# if isinstance(rad40, (list, tuple)):
# rad40 = ufloat(*rad40)
# if isinstance(k39, (list, tuple)):
# k39 = ufloat(*k39)
if isinstance(f, (list, tuple)):
f = ufloat(*f)
if isinstance(age, (list, tuple)):
age = ufloat(*age)
# age = (1 / constants.lambdak) * umath.log(1 + JR)
try:
# r = rad40 / k39
if arar_constants is None:
arar_constants = ArArConstants()
j = (umath.exp(age * arar_constants.lambda_k.nominal_value) - 1) / f
return j.nominal_value, j.std_dev
except ZeroDivisionError:
return 1, 0
示例9: small_sep02
def small_sep02 ( mx , mxErr, lag=0):
"""
Given a frequency matrix and errors calculates the (scaled) small
separation d02 and propagates errors.
Notes
-----
The parameter lag is the difference between the radial orders of
the first modes of l=0 and l=2.
"""
(Nn, Nl) = np.shape(mx)
d02 = np.zeros((1,Nn))
d02Err = np.zeros((1,Nn))
d02.fill(None) # values that can't be calculated are NaN
for n in range(1-lag,Nn):
if (mx[n,0] != 0. and mx[n-1+lag,2] != 0.):
a = un.ufloat( (mx[n,0], mxErr[n,0]) )
b = un.ufloat( (mx[n-1+lag,2], mxErr[n-1+lag,2]) )
result = (a-b) / 3.
d02[0,n-1+lag] = un.nominal_value(result)
d02Err[0,n-1+lag] = un.std_dev(result)
return d02, d02Err
示例10: day3_vacuum
def day3_vacuum():
plt.clf()
ux = unp.uarray([800, 1000, 500], ux_error) # V
ug_crit = unp.uarray([110, 140, 30], ug_error) # V
omega = 2 * math.pi * ufloat(48, 1) # Hz
ug_crit = _apply_additional_proportional_error(ug_crit, stability_uncertainty_vacuum)
ux *= ux_correction
ug_crit *= ug_correction
stability(ux, ug_crit, omega, label="Particle V1")
plt.title("p = 300 mbar")
plt.legend(loc=2)
plt.savefig("images/stability_vacuum_1.pdf")
plt.clf()
ux = unp.uarray([700, 800], ux_error) # V
ug_crit = unp.uarray([100, 140], ug_error) # V
omega = 2 * math.pi * ufloat(45, 1) # Hz
ug_crit = _apply_additional_proportional_error(ug_crit, stability_uncertainty_vacuum)
ux *= ux_correction
ug_crit *= ug_correction
stability(ux, ug_crit, omega, label="Particle V2")
plt.title("p = 180 mbar")
plt.legend(loc=2)
plt.savefig("images/stability_vacuum_2.pdf")
示例11: safe_div
def safe_div(n, d):
if n.size == 0:
return None
if n.shape != d.shape:
return None
if isinstance(n[0, 0], UFloat) is False:
return None
z = np.zeros_like(n)
z.fill(ufloat(np.nan, np.nan))
it = np.nditer(d, op_flags=["readonly"], flags=["multi_index", "refs_ok"])
while not it.finished:
i = it.multi_index[0]
j = it.multi_index[1]
if abs(d[i, j].n) == 0.0:
# z[i,j] = ufloat(0.,0.)
z[i, j] = ufloat(np.nan, np.nan)
# if abs(n[i,j].n) > 0. :
# z[i,j] = ufloat(np.nan,np.nan)
# else :
# err = np.sqrt( n[i,j].s**2. + d[i,j].s**2. )
# z[i,j] = ufloat(0.,err)
# z[i,j] = ufloat(np.nan,np.nan)
# z[i,j] = ufloat(np.inf,np.inf)
else:
z[i, j] = n[i, j] / d[i, j]
it.iternext()
return z
示例12: day2_air
def day2_air():
plt.clf()
ux = unp.uarray([1000, 860, 800, 760, 1000, 920, 620], ux_error) # V
ug_crit_1 = unp.uarray([390, 170, 600, 120, 225, 175, 53], ug_error) # V
ug_crit_2 = unp.uarray([390, 170, 600, 120, 160, 145, 67], ug_error) # V
ug_crit_3 = unp.uarray([390, 370, 600, 120, 225, 175, 67], ug_error) # V
omega = 2 * math.pi * ufloat(28, 1) # Hz
ux *= ux_correction
for i, ug_crit in enumerate((ug_crit_1, ug_crit_2, ug_crit_3), 1):
ug_crit = _apply_additional_proportional_error(ug_crit, stability_uncertainty_air)
ug_crit *= ug_correction
stability(ux, ug_crit, omega, "Particle A%d" % i)
plt.legend(loc=2)
plt.savefig("images/stability_air_1.pdf")
plt.clf()
ux = unp.uarray([550, 740, 870, 1040], ux_error)
ug_crit = unp.uarray([39, 84, 133, 147], ug_error)
omega = 2 * math.pi * ufloat(32, 1) # Hz
ug_crit = _apply_additional_proportional_error(ug_crit, stability_uncertainty_air)
ux *= ux_correction
ug_crit *= ug_correction
stability(ux, ug_crit, omega, label="Particle A4")
plt.legend(loc=2)
plt.savefig("images/stability_air_2.pdf")
示例13: get_1d_loose_efficiencies
def get_1d_loose_efficiencies( int_stat, int_syst, lead_reg, lead_ptrange, systematics=None) :
eff_stat = {}
eff_syst = {}
if int_stat['lead']['real']['loose'].n == 0 :
eff_stat['eff_R_T_lead'] = ufloat( 1.0, int_stat['lead']['real']['tight'].s/int_stat['lead']['real']['tight'].n )
else :
eff_stat['eff_R_T_lead'] = int_stat['lead']['real']['tight'] / (int_stat['lead']['real']['tight']+int_stat['lead']['real']['loose'])
eff_stat['eff_F_T_lead'] = int_stat['lead']['fake']['tight'] / (int_stat['lead']['fake']['tight']+int_stat['lead']['fake']['loose'])
eff_stat['eff_R_L_lead'] = int_stat['lead']['real']['loose'] / (int_stat['lead']['real']['tight']+int_stat['lead']['real']['loose'])
eff_stat['eff_F_L_lead'] = int_stat['lead']['fake']['loose'] / (int_stat['lead']['fake']['tight']+int_stat['lead']['fake']['loose'])
eff_syst['eff_R_T_lead'] = int_syst['lead']['real']['tight'] / (int_syst['lead']['real']['tight']+int_syst['lead']['real']['loose'])
eff_syst['eff_F_T_lead'] = int_syst['lead']['fake']['tight'] / (int_syst['lead']['fake']['tight']+int_syst['lead']['fake']['loose'])
eff_syst['eff_R_L_lead'] = int_syst['lead']['real']['loose'] / (int_syst['lead']['real']['tight']+int_syst['lead']['real']['loose'])
eff_syst['eff_F_L_lead'] = int_syst['lead']['fake']['loose'] / (int_syst['lead']['fake']['tight']+int_syst['lead']['fake']['loose'])
# Do systematics
# the integrals may already have some systematics
# that are propagated to the eff_*
# therefore, don't overwrite the existing
# systematics, but make a ufloat with a
# zero value, and non-zero syst
eff_syst['eff_R_L_lead'] = eff_syst['eff_R_L_lead'] + ufloat( 0.0, math.fabs(eff_syst['eff_R_L_lead'].n)*get_syst_uncertainty( 'RealTemplateNom', lead_reg, lead_ptrange, 'real', 'loose' ), 'Template_lead_real_loose')
eff_syst['eff_F_L_lead'] = eff_syst['eff_F_L_lead'] + ufloat( 0.0, math.fabs(eff_syst['eff_F_L_lead'].n)*get_syst_uncertainty( 'FakeTemplate%s'%systematics, lead_reg, lead_ptrange, 'fake', 'loose' ), 'Template_lead_fake_loose' )
eff_syst['eff_R_T_lead'] = eff_syst['eff_R_T_lead'] + ufloat( 0.0, math.fabs(eff_syst['eff_R_T_lead'].n)*get_syst_uncertainty( 'RealTemplateNom', lead_reg, lead_ptrange, 'real', 'loose' ), 'Template_lead_real_loose')
eff_syst['eff_F_T_lead'] = eff_syst['eff_F_T_lead'] + ufloat( 0.0, math.fabs(eff_syst['eff_F_T_lead'].n)*get_syst_uncertainty( 'FakeTemplate%s'%systematics, lead_reg, lead_ptrange, 'fake', 'loose' ), 'Template_lead_fake_loose' )
return eff_stat, eff_syst
示例14: _set_age_values
def _set_age_values(self, f, include_decay_error=False):
arc = self.arar_constants
j = copy(self.j)
if j is None:
j = ufloat(1e-4, 1e-7)
j.tag = 'Position'
j.std_dev = self.position_jerr or 0
age = age_equation(j, f, include_decay_error=include_decay_error, arar_constants=arc)
self.uage_w_position_err = age
j = self.j
if j is None:
j = ufloat(1e-4, 1e-7, tag='J')
age = age_equation(j, f, include_decay_error=include_decay_error, arar_constants=arc)
self.uage_w_j_err = age
j = copy(self.j)
if j is None:
j = ufloat(1e-4, 1e-7, tag='J')
j.std_dev = 0
age = age_equation(j, f, include_decay_error=include_decay_error, arar_constants=arc)
self.uage = age
self.age = nominal_value(age)
self.age_err = std_dev(age)
self.age_err_wo_j = std_dev(age)
for iso in self.itervalues():
iso.age_error_component = self.get_error_component(iso.name)
示例15: test_decimal_places
def test_decimal_places(self):
cases = [(0, '0'), (-1, '-1'), (0.012, '0.01'), (0.016, '0.02')
, (ufloat(0,0), r'$0.0 \pm 0.0$'), (ufloat(10,0), r'$10.0 \pm 0.0$')
, (ufloat(0.12, 0.012), r'$0.12 \pm 0.01$'), (ufloat(0.12, 0.016), r'$0.12 \pm 0.02$')
, (ufloat(-0.12, 0.016), r'$-0.12 \pm 0.02$')]
for test_case, result in cases:
self.assertEqual(display_num(test_case, decimal_places=2), result)