本文整理匯總了Python中tvb.core.services.operation_service.OperationService.prepare_operations_for_workflowsteps方法的典型用法代碼示例。如果您正苦於以下問題:Python OperationService.prepare_operations_for_workflowsteps方法的具體用法?Python OperationService.prepare_operations_for_workflowsteps怎麽用?Python OperationService.prepare_operations_for_workflowsteps使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tvb.core.services.operation_service.OperationService
的用法示例。
在下文中一共展示了OperationService.prepare_operations_for_workflowsteps方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: TestWorkflow
# 需要導入模塊: from tvb.core.services.operation_service import OperationService [as 別名]
# 或者: from tvb.core.services.operation_service.OperationService import prepare_operations_for_workflowsteps [as 別名]
class TestWorkflow(TransactionalTestCase):
"""
Test that workflow conversion methods are valid.
"""
def transactional_setup_method(self):
"""
Sets up the testing environment;
saves config file;
creates a test user, a test project;
creates burst, operation, flow and workflow services
"""
self.test_user = TestFactory.create_user()
self.test_project = TestFactory.create_project(self.test_user)
self.workflow_service = WorkflowService()
self.burst_service = BurstService()
self.operation_service = OperationService()
self.flow_service = FlowService()
def transactional_teardown_method(self):
"""
Remove project folders and clean up database.
"""
FilesHelper().remove_project_structure(self.test_project.name)
self.delete_project_folders()
def __create_complex_workflow(self, workflow_step_list):
"""
Creates a burst with a complex workflow with a given list of workflow steps.
:param workflow_step_list: a list of workflow steps that will be used in the
creation of a new workflow for a new burst
"""
burst_config = TestFactory.store_burst(self.test_project.id)
stored_dt = datatypes_factory.DatatypesFactory()._store_datatype(Datatype1())
first_step_algorithm = self.flow_service.get_algorithm_by_module_and_class("tvb.tests.framework.adapters.testadapter1",
"TestAdapterDatatypeInput")
metadata = {DataTypeMetaData.KEY_BURST: burst_config.id}
kwargs = {"test_dt_input": stored_dt.gid, 'test_non_dt_input': '0'}
operations, group = self.operation_service.prepare_operations(self.test_user.id, self.test_project.id,
first_step_algorithm,
first_step_algorithm.algorithm_category,
metadata, **kwargs)
workflows = self.workflow_service.create_and_store_workflow(project_id=self.test_project.id,
burst_id=burst_config.id,
simulator_index=0,
simulator_id=first_step_algorithm.id,
operations=operations)
self.operation_service.prepare_operations_for_workflowsteps(workflow_step_list, workflows, self.test_user.id,
burst_config.id, self.test_project.id, group,
operations)
#fire the first op
if len(operations) > 0:
self.operation_service.launch_operation(operations[0].id, False)
return burst_config.id
def test_workflow_generation(self):
"""
A simple test just for the fact that a workflow is created an ran,
no dynamic parameters are passed. In this case we create a two steps
workflow: step1 - tvb.tests.framework.adapters.testadapter2.TestAdapter2
step2 - tvb.tests.framework.adapters.testadapter1.TestAdapter1
The first adapter doesn't return anything and the second returns one
tvb.datatypes.datatype1.Datatype1 instance. We check that the steps
are actually ran by checking that two operations are created and that
one dataType is stored.
"""
workflow_step_list = [TestFactory.create_workflow_step("tvb.tests.framework.adapters.testadapter2",
"TestAdapter2", step_index=1,
static_kwargs={"test2": 2}),
TestFactory.create_workflow_step("tvb.tests.framework.adapters.testadapter1",
"TestAdapter1", step_index=2,
static_kwargs={"test1_val1": 1, "test1_val2": 1})]
self.__create_complex_workflow(workflow_step_list)
stored_datatypes = dao.get_datatypes_in_project(self.test_project.id)
assert len(stored_datatypes) == 2, "DataType from second step was not stored."
assert stored_datatypes[0].type == 'Datatype1', "Wrong type was stored."
assert stored_datatypes[1].type == 'Datatype1', "Wrong type was stored."
finished, started, error, _, _ = dao.get_operation_numbers(self.test_project.id)
assert finished == 3, "Didnt start operations for both adapters in workflow."
assert started == 0, "Some operations from workflow didnt finish."
assert error == 0, "Some operations finished with error status."
def test_workflow_dynamic_params(self):
"""
A simple test just for the fact that dynamic parameters are passed properly
between two workflow steps:
step1 - tvb.tests.framework.adapters.testadapter1.TestAdapter1
step2 - tvb.tests.framework.adapters.testadapter3.TestAdapter3
The first adapter returns a tvb.datatypes.datatype1.Datatype1 instance.
The second adapter has this passed as a dynamic workflow parameter.
We check that the steps are actually ran by checking that two operations
#.........這裏部分代碼省略.........
示例2: __init__
# 需要導入模塊: from tvb.core.services.operation_service import OperationService [as 別名]
# 或者: from tvb.core.services.operation_service.OperationService import prepare_operations_for_workflowsteps [as 別名]
#.........這裏部分代碼省略.........
def _prepare_operations(self, burst_config, simulator_index, simulator_id, user_id):
"""
Prepare all required operations for burst launch.
"""
project_id = burst_config.fk_project
burst_id = burst_config.id
workflow_step_list = []
starting_index = simulator_index + 1
sim_algo = FlowService().get_algorithm_by_identifier(simulator_id)
metadata = {DataTypeMetaData.KEY_BURST: burst_id}
launch_data = burst_config.get_all_simulator_values()[0]
operations, group = self.operation_service.prepare_operations(
user_id, project_id, sim_algo, sim_algo.algo_group.group_category, metadata, **launch_data
)
group_launched = group is not None
if group_launched:
starting_index += 1
for tab in burst_config.tabs:
for portlet_cfg in tab.portlets:
### For each portlet configuration stored, update the step index ###
### and also change the dynamic parameters step indexes to point ###
### to the simulator outputs. ##
if portlet_cfg is not None:
analyzers = portlet_cfg.analyzers
visualizer = portlet_cfg.visualizer
for entry in analyzers:
entry.step_index = starting_index
self.workflow_service.set_dynamic_step_references(entry, simulator_index)
workflow_step_list.append(entry)
starting_index += 1
### Change the dynamic parameters to point to the last adapter from this portlet execution.
visualizer.step_visible = False
if len(workflow_step_list) > 0 and isinstance(workflow_step_list[-1], model.WorkflowStep):
self.workflow_service.set_dynamic_step_references(visualizer, workflow_step_list[-1].step_index)
else:
self.workflow_service.set_dynamic_step_references(visualizer, simulator_index)
### Only for a single operation have the step of visualization, otherwise is useless.
if not group_launched:
workflow_step_list.append(visualizer)
if group_launched:
### For a group of operations, make sure the metric for PSE view
### is also computed, immediately after the simulation.
metric_algo, metric_group = FlowService().get_algorithm_by_module_and_class(
MEASURE_METRICS_MODULE, MEASURE_METRICS_CLASS
)
_, metric_interface = FlowService().prepare_adapter(project_id, metric_group)
dynamics = {}
for entry in metric_interface:
# We have a select that should be the dataType and a select multiple with the
# required metric algorithms to be evaluated. Only dynamic parameter should be
# the select type.
if entry[ABCAdapter.KEY_TYPE] == "select":
dynamics[entry[ABCAdapter.KEY_NAME]] = {
WorkflowStepConfiguration.DATATYPE_INDEX_KEY: 0,
WorkflowStepConfiguration.STEP_INDEX_KEY: simulator_index,
}
metric_step = model.WorkflowStep(
algorithm_id=metric_algo.id, step_index=simulator_index + 1, static_param={}, dynamic_param=dynamics
)
metric_step.step_visible = False
workflow_step_list.insert(0, metric_step)
workflows = self.workflow_service.create_and_store_workflow(
project_id, burst_id, simulator_index, simulator_id, operations
)
self.operation_service.prepare_operations_for_workflowsteps(
workflow_step_list, workflows, user_id, burst_id, project_id, group, operations
)
operation_ids = [operation.id for operation in operations]
return operation_ids
def _async_launch_and_prepare(self, burst_config, simulator_index, simulator_id, user_id):
"""
Prepare operations asynchronously.
"""
try:
operation_ids = self._prepare_operations(burst_config, simulator_index, simulator_id, user_id)
self.logger.debug("Starting a total of %s workflows" % (len(operation_ids)))
wf_errs = 0
for operation_id in operation_ids:
try:
OperationService().launch_operation(operation_id, True)
except Exception, excep:
self.logger.error(excep)
wf_errs += 1
self.workflow_service.mark_burst_finished(burst_config, error_message=str(excep))
self.logger.debug(
"Finished launching workflows. "
+ str(len(operation_ids) - wf_errs)
+ " were launched successfully, "
+ str(wf_errs)
+ " had error on pre-launch steps"
)
except Exception, excep:
self.logger.error(excep)
self.workflow_service.mark_burst_finished(burst_config, error_message=str(excep))
示例3: BurstService
# 需要導入模塊: from tvb.core.services.operation_service import OperationService [as 別名]
# 或者: from tvb.core.services.operation_service.OperationService import prepare_operations_for_workflowsteps [as 別名]
#.........這裏部分代碼省略.........
self.workflow_service.set_dynamic_step_references(entry, simulator_index)
workflow_step_list.append(entry)
starting_index += 1
### Change the dynamic parameters to point to the last adapter from this portlet execution.
visualizer.step_visible = False
if len(workflow_step_list) > 0 and isinstance(workflow_step_list[-1], model.WorkflowStep):
self.workflow_service.set_dynamic_step_references(visualizer, workflow_step_list[-1].step_index)
else:
self.workflow_service.set_dynamic_step_references(visualizer, simulator_index)
### Only for a single operation have the step of visualization, otherwise is useless.
if not group_launched:
workflow_step_list.append(visualizer)
if group_launched:
### For a group of operations, make sure the metric for PSE view
### is also computed, immediately after the simulation.
metric_algo = FlowService().get_algorithm_by_module_and_class(MEASURE_METRICS_MODULE, MEASURE_METRICS_CLASS)
metric_interface = FlowService().prepare_adapter(project_id, metric_algo)
dynamics = {}
for entry in metric_interface:
# We have a select that should be the dataType and a select multiple with the
# required metric algorithms to be evaluated. Only dynamic parameter should be
# the select type.
if entry[KEY_TYPE] == TYPE_SELECT:
dynamics[entry[KEY_NAME]] = {WorkflowStepConfiguration.DATATYPE_INDEX_KEY: 0,
WorkflowStepConfiguration.STEP_INDEX_KEY: simulator_index}
metric_step = model.WorkflowStep(algorithm_id=metric_algo.id, step_index=simulator_index + 1,
static_param={}, dynamic_param=dynamics)
metric_step.step_visible = False
workflow_step_list.insert(0, metric_step)
workflows = self.workflow_service.create_and_store_workflow(project_id, burst_id, simulator_index,
simulator_id, operations)
self.operation_service.prepare_operations_for_workflowsteps(workflow_step_list, workflows, user_id,
burst_id, project_id, group, operations)
operation_ids = [operation.id for operation in operations]
return operation_ids
def _async_launch_and_prepare(self, burst_config, simulator_index, simulator_id, user_id):
"""
Prepare operations asynchronously.
"""
try:
operation_ids = self._prepare_operations(burst_config, simulator_index, simulator_id, user_id)
self.logger.debug("Starting a total of %s workflows" % (len(operation_ids, )))
wf_errs = 0
for operation_id in operation_ids:
try:
OperationService().launch_operation(operation_id, True)
except Exception as excep:
self.logger.error(excep)
wf_errs += 1
self.workflow_service.mark_burst_finished(burst_config, error_message=str(excep))
self.logger.debug("Finished launching workflows. " + str(len(operation_ids) - wf_errs) +
" were launched successfully, " + str(wf_errs) + " had error on pre-launch steps")
except Exception as excep:
self.logger.error(excep)
self.workflow_service.mark_burst_finished(burst_config, error_message=str(excep))
@staticmethod
def launch_visualization(visualization, frame_width=None, frame_height=None, is_preview=True):
"""
:param visualization: a visualization workflow step