本文整理匯總了Python中tvb.core.adapters.abcdisplayer.ABCDisplayer類的典型用法代碼示例。如果您正苦於以下問題:Python ABCDisplayer類的具體用法?Python ABCDisplayer怎麽用?Python ABCDisplayer使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了ABCDisplayer類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compute_parameters
def compute_parameters(input_data, colors=None, rays=None):
"""
Having as inputs a Connectivity matrix(required) and two arrays that
represent the rays and colors of the nodes from the matrix(optional)
this method will build the required parameter dictionary that will be
sent to the HTML/JS 3D representation of the connectivity matrix.
"""
if colors is not None:
color_list = colors.array_data.tolist()
color_list = ABCDisplayer.get_one_dimensional_list(color_list, input_data.number_of_regions,
"Invalid input size for Sphere Colors")
color_list = numpy.nan_to_num(numpy.array(color_list, dtype=numpy.float64)).tolist()
else:
color_list = [1.0] * input_data.number_of_regions
if rays is not None:
rays_list = rays.array_data.tolist()
rays_list = ABCDisplayer.get_one_dimensional_list(rays_list, input_data.number_of_regions,
"Invalid input size for Sphere Sizes")
rays_list = numpy.nan_to_num(numpy.array(rays_list, dtype=numpy.float64)).tolist()
else:
rays_list = [1.0] * input_data.number_of_regions
params = dict(raysArray=json.dumps(rays_list), rayMin=min(rays_list), rayMax=max(rays_list),
colorsArray=json.dumps(color_list), colorMin=min(color_list), colorMax=max(color_list))
return params, {}
示例2: prepare_mapped_sensors_as_measure_points_params
def prepare_mapped_sensors_as_measure_points_params(project_id, sensors, eeg_cap=None):
"""
Compute sensors positions by mapping them to the ``eeg_cap`` surface
If ``eeg_cap`` is not specified the mapping will use a default EEGCal DataType in current project.
If no default EEGCap is found, return sensors as they are (not projected)
:returns: dictionary to be used in Viewers for rendering measure_points
:rtype: dict
"""
if eeg_cap is None:
eeg_cap = dao.try_load_last_entity_of_type(project_id, EEGCap)
if eeg_cap:
datatype_kwargs = json.dumps({'surface_to_map': eeg_cap.gid})
sensor_locations = ABCDisplayer.paths2url(sensors, 'sensors_to_surface') + '/' + datatype_kwargs
sensor_no = sensors.number_of_sensors
sensor_labels = ABCDisplayer.paths2url(sensors, 'labels')
return {'urlMeasurePoints': sensor_locations,
'urlMeasurePointsLabels': sensor_labels,
'noOfMeasurePoints': sensor_no,
'minMeasure': 0,
'maxMeasure': sensor_no,
'urlMeasure': ''}
return prepare_sensors_as_measure_points_params(sensors)
示例3: get_sensor_measure_points
def get_sensor_measure_points(sensors):
"""
Returns urls from where to fetch the measure points and their labels
"""
measure_points = ABCDisplayer.paths2url(sensors, 'locations')
measure_points_no = sensors.number_of_sensors
measure_points_labels = ABCDisplayer.paths2url(sensors, 'labels')
return measure_points, measure_points_labels, measure_points_no
示例4: retrieve_measure_points
def retrieve_measure_points(self, time_series):
"""
To be overwritten method, for retrieving the measurement points (region centers, EEG sensors).
"""
if isinstance(time_series, TimeSeriesSurface):
return [], [], 0
measure_points = ABCDisplayer.paths2url(time_series.connectivity, 'centres')
measure_points_labels = ABCDisplayer.paths2url(time_series.connectivity, 'region_labels')
measure_points_no = time_series.connectivity.number_of_regions
return measure_points, measure_points_labels, measure_points_no
示例5: prepare_sensors_as_measure_points_params
def prepare_sensors_as_measure_points_params(sensors):
"""
Returns urls from where to fetch the measure points and their labels
"""
sensor_locations = ABCDisplayer.paths2url(sensors, 'locations')
sensor_no = sensors.number_of_sensors
sensor_labels = ABCDisplayer.paths2url(sensors, 'labels')
return {'urlMeasurePoints': sensor_locations,
'urlMeasurePointsLabels': sensor_labels,
'noOfMeasurePoints': sensor_no,
'minMeasure': 0,
'maxMeasure': sensor_no,
'urlMeasure': ''}
示例6: compute_params
def compute_params(self, region_mapping_volume=None, measure=None, data_slice='', background=None):
region_mapping_volume = self._ensure_region_mapping(region_mapping_volume)
volume = region_mapping_volume.volume
volume_shape = region_mapping_volume.read_data_shape()
volume_shape = (1, ) + volume_shape
if measure is None:
params = self._compute_region_volume_map_params(region_mapping_volume)
else:
params = self._compute_measure_params(region_mapping_volume, measure, data_slice)
url_voxel_region = ABCDisplayer.paths2url(region_mapping_volume, "get_voxel_region", parameter="")
params.update(volumeShape=json.dumps(volume_shape),
volumeOrigin=json.dumps(volume.origin.tolist()),
voxelUnit=volume.voxel_unit,
voxelSize=json.dumps(volume.voxel_size.tolist()),
urlVoxelRegion=url_voxel_region)
if background is None:
background = dao.try_load_last_entity_of_type(self.current_project_id, StructuralMRI)
params.update(self._compute_background(background))
return params
示例7: get_metric_matrix
def get_metric_matrix(self, datatype_group, selected_metric=None):
self.model = PseIsoModel.from_db(datatype_group.fk_operation_group)
if selected_metric is None:
selected_metric = self.model.metrics.keys()[0]
data_matrix = self.model.apriori_data[selected_metric]
data_matrix = numpy.rot90(data_matrix)
data_matrix = numpy.flipud(data_matrix)
matrix_data = ABCDisplayer.dump_with_precision(data_matrix.flat)
matrix_guids = self.model.datatypes_gids
matrix_guids = numpy.rot90(matrix_guids)
matrix_shape = json.dumps(data_matrix.squeeze().shape)
x_min = self.model.apriori_x[0]
x_max = self.model.apriori_x[self.model.apriori_x.size - 1]
y_min = self.model.apriori_y[0]
y_max = self.model.apriori_y[self.model.apriori_y.size - 1]
vmin = data_matrix.min()
vmax = data_matrix.max()
return dict(matrix_data=matrix_data,
matrix_guids=json.dumps(matrix_guids.flatten().tolist()),
matrix_shape=matrix_shape,
color_metric=selected_metric,
x_min=x_min,
x_max=x_max,
y_min=y_min,
y_max=y_max,
vmin=vmin,
vmax=vmax)
示例8: launch
def launch(self, **kwargs):
self.log.debug("Plot started...")
input_data = kwargs['input_data']
shape = list(input_data.read_data_shape())
state_list = input_data.source.labels_dimensions.get(input_data.source.labels_ordering[1], [])
mode_list = range(shape[3])
available_scales = ["Linear", "Logarithmic"]
params = dict(matrix_shape=json.dumps([shape[0], shape[2]]),
plotName=input_data.source.type,
url_base=ABCDisplayer.paths2url(input_data, "get_fourier_data", parameter=""),
xAxisName="Frequency [kHz]",
yAxisName="Power",
available_scales=available_scales,
state_list=state_list,
mode_list=mode_list,
normalize_list=["no", "yes"],
normalize="no",
state_variable=state_list[0],
mode=mode_list[0],
xscale=available_scales[0],
yscale=available_scales[0],
x_values=json.dumps(input_data.frequency[slice(shape[0])].tolist()),
xmin=input_data.freq_step,
xmax=input_data.max_freq)
return self.build_display_result("fourier_spectrum/view", params)
示例9: launch
def launch(self, connectivity):
"""Construct data for visualization and launch it."""
pars = {"labels": json.dumps(connectivity.region_labels.tolist()),
"url_base": ABCDisplayer.paths2url(connectivity, attribute_name="weights", flatten="True")
}
return self.build_display_result("connectivity_edge_bundle/view", pars)
示例10: retrieve_measure_points_prams
def retrieve_measure_points_prams(self, time_series):
"""
To be overwritten method, for retrieving the measurement points (region centers, EEG sensors).
"""
if self.connectivity is None:
self.measure_points_no = 0
return {'urlMeasurePoints': [],
'urlMeasurePointsLabels': [],
'noOfMeasurePoints': 0}
measure_points = ABCDisplayer.paths2url(self.connectivity, 'centres')
measure_points_labels = ABCDisplayer.paths2url(self.connectivity, 'region_labels')
self.measure_points_no = self.connectivity.number_of_regions
return {'urlMeasurePoints': measure_points,
'urlMeasurePointsLabels': measure_points_labels,
'noOfMeasurePoints': self.measure_points_no}
示例11: _compute_background
def _compute_background(background):
if background is not None:
min_value, max_value = background.get_min_max_values()
url_volume_data = ABCDisplayer.paths2url(background, 'get_volume_view', parameter='')
else:
min_value, max_value = 0, 0
url_volume_data = None
return dict( minBackgroundValue=min_value, maxBackgroundValue=max_value,
urlBackgroundVolumeData = url_volume_data )
示例12: compute_raw_matrix_params
def compute_raw_matrix_params(matrix):
"""
Serializes matrix data, shape and stride metadata to json
"""
matrix_data = ABCDisplayer.dump_with_precision(matrix.flat)
matrix_shape = json.dumps(matrix.shape)
return dict(matrix_data=matrix_data,
matrix_shape=matrix_shape)
示例13: launch
def launch(self, datatype):
"""Construct data for visualization and launch it."""
# get data from coher datatype, convert to json
frequency = ABCDisplayer.dump_with_precision(datatype.get_data('frequency').flat)
array_data = datatype.get_data('array_data')
params = self.compute_raw_matrix_params(array_data)
params.update(frequency=frequency)
params.update(matrix_strides=json.dumps([x / array_data.itemsize for x in array_data.strides]))
return self.build_display_result("cross_coherence/view", params)
示例14: compute_sensor_surfacemapped_measure_points
def compute_sensor_surfacemapped_measure_points(project_id, sensors, eeg_cap=None):
"""
Compute sensors positions by mapping them to the ``eeg_cap`` surface
If ``eeg_cap`` is not specified the mapping will use a default.
It returns a url from where to fetch the positions
If no default is available it returns None
:returns: measure points, measure points labels, measure points number
:rtype: tuple
"""
if eeg_cap is None:
eeg_cap = dao.get_values_of_datatype(project_id, EEGCap)[0]
if eeg_cap:
eeg_cap = ABCDisplayer.load_entity_by_gid(eeg_cap[-1][2])
if eeg_cap:
datatype_kwargs = json.dumps({'surface_to_map': eeg_cap.gid})
measure_points = ABCDisplayer.paths2url(sensors, 'sensors_to_surface') + '/' + datatype_kwargs
measure_points_no = sensors.number_of_sensors
measure_points_labels = ABCDisplayer.paths2url(sensors, 'labels')
return measure_points, measure_points_labels, measure_points_no
示例15: get_shell_surface_urls
def get_shell_surface_urls(shell_surface=None, project_id=0):
if shell_surface is None:
shell_surface = dao.get_values_of_datatype(project_id, FaceSurface)[0]
if not shell_surface:
raise Exception('No face object found in database.')
shell_surface = ABCDisplayer.load_entity_by_gid(shell_surface[0][2])
face_vertices, face_normals, _, face_triangles = shell_surface.get_urls_for_rendering()
return json.dumps([face_vertices, face_normals, face_triangles])