當前位置: 首頁>>代碼示例>>Python>>正文


Python Adam.load_state_dict方法代碼示例

本文整理匯總了Python中torch.optim.Adam.load_state_dict方法的典型用法代碼示例。如果您正苦於以下問題:Python Adam.load_state_dict方法的具體用法?Python Adam.load_state_dict怎麽用?Python Adam.load_state_dict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.optim.Adam的用法示例。


在下文中一共展示了Adam.load_state_dict方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit

# 需要導入模塊: from torch.optim import Adam [as 別名]
# 或者: from torch.optim.Adam import load_state_dict [as 別名]
    def fit(self, model, feature_extraction, protocol, log_dir, subset='train',
            epochs=1000, restart=0, gpu=False):
        """Train model

        Parameters
        ----------
        model : nn.Module
            Embedding model
        feature_extraction :
            Feature extraction.
        protocol : pyannote.database.Protocol
        log_dir : str
            Directory where models and other log files are stored.
        subset : {'train', 'development', 'test'}, optional
            Defaults to 'train'.
        epochs : int, optional
            Train model for that many epochs.
        restart : int, optional
            Restart training at this epoch. Defaults to train from scratch.
        gpu : bool, optional
        """

        import tensorboardX
        writer = tensorboardX.SummaryWriter(log_dir=log_dir)

        checkpoint = Checkpoint(log_dir=log_dir,
                                      restart=restart > 0)

        batch_generator = self.get_batch_generator(feature_extraction)
        batches = batch_generator(protocol, subset=subset)
        batch = next(batches)

        batches_per_epoch = batch_generator.batches_per_epoch

        # save list of classes (one speaker per line)
        labels = batch_generator.labels
        classes_txt = self.CLASSES_TXT.format(log_dir=log_dir)
        with open(classes_txt, mode='w') as fp:
            for label in labels:
                fp.write(f'{label}\n')

        # initialize classifier
        n_classes = batch_generator.n_classes
        classifier = Classifier(model.output_dim, n_classes,
                                linear=self.linear)

        # load precomputed weights in case of restart
        if restart > 0:
            weights_pt = checkpoint.WEIGHTS_PT.format(
                log_dir=log_dir, epoch=restart)
            model.load_state_dict(torch.load(weights_pt))
            classifier_pt = self.CLASSIFIER_PT.format(
                log_dir=log_dir, epoch=restart)

        # send models to GPU
        if gpu:
            model = model.cuda()
            classifier = classifier.cuda(device=None)

        model.internal = False

        optimizer = Adam(list(model.parameters()) + \
                         list(classifier.parameters()))
        if restart > 0:
            optimizer_pt = checkpoint.OPTIMIZER_PT.format(
                log_dir=log_dir, epoch=restart)
            optimizer.load_state_dict(torch.load(optimizer_pt))
            if gpu:
                for state in optimizer.state.values():
                    for k, v in state.items():
                        if torch.is_tensor(v):
                            state[k] = v.cuda()

        epoch = restart if restart > 0 else -1
        while True:
            epoch += 1
            if epoch > epochs:
                break

            loss_avg = 0.

            log_epoch = (epoch < 10) or (epoch % 5 == 0)

            if log_epoch:
                pass

            desc = 'Epoch #{0}'.format(epoch)
            for i in tqdm(range(batches_per_epoch), desc=desc):

                model.zero_grad()

                batch = next(batches)

                X = batch['X']
                y = batch['y']
                if not getattr(model, 'batch_first', True):
                    X = np.rollaxis(X, 0, 2)
                X = np.array(X, dtype=np.float32)
                X = Variable(torch.from_numpy(X))
                y = Variable(torch.from_numpy(y))
#.........這裏部分代碼省略.........
開發者ID:instinct2k18,項目名稱:pyannote-audio,代碼行數:103,代碼來源:softmax.py

示例2: fit

# 需要導入模塊: from torch.optim import Adam [as 別名]
# 或者: from torch.optim.Adam import load_state_dict [as 別名]
    def fit(self, model, feature_extraction, protocol, log_dir, subset='train',
            epochs=1000, restart=0, gpu=False):

        import tensorboardX
        writer = tensorboardX.SummaryWriter(log_dir=log_dir)

        checkpoint = Checkpoint(log_dir=log_dir,
                                      restart=restart > 0)

        batch_generator = SpeechSegmentGenerator(
            feature_extraction,
            per_label=self.per_label, per_fold=self.per_fold,
            duration=self.duration, parallel=self.parallel)
        batches = batch_generator(protocol, subset=subset)
        batch = next(batches)

        batches_per_epoch = batch_generator.batches_per_epoch

        if restart > 0:
            weights_pt = checkpoint.WEIGHTS_PT.format(
                log_dir=log_dir, epoch=restart)
            model.load_state_dict(torch.load(weights_pt))

        if gpu:
            model = model.cuda()

        model.internal = False

        parameters = list(model.parameters())

        if self.variant in [2, 3, 4, 5, 6, 7, 8]:

            # norm batch-normalization
            self.norm_bn = nn.BatchNorm1d(
                1, eps=1e-5, momentum=0.1, affine=True)
            if gpu:
                self.norm_bn = self.norm_bn.cuda()
            parameters += list(self.norm_bn.parameters())

        if self.variant in [9]:
            # norm batch-normalization
            self.norm_bn = nn.BatchNorm1d(
                1, eps=1e-5, momentum=0.1, affine=False)
            if gpu:
                self.norm_bn = self.norm_bn.cuda()
            parameters += list(self.norm_bn.parameters())

        if self.variant in [5, 6, 7]:
            self.positive_bn = nn.BatchNorm1d(
                1, eps=1e-5, momentum=0.1, affine=False)
            self.negative_bn = nn.BatchNorm1d(
                1, eps=1e-5, momentum=0.1, affine=False)
            if gpu:
                self.positive_bn = self.positive_bn.cuda()
                self.negative_bn = self.negative_bn.cuda()
            parameters += list(self.positive_bn.parameters())
            parameters += list(self.negative_bn.parameters())

        if self.variant in [8, 9]:

            self.delta_bn = nn.BatchNorm1d(
                1, eps=1e-5, momentum=0.1, affine=False)
            if gpu:
                self.delta_bn = self.delta_bn.cuda()
            parameters += list(self.delta_bn.parameters())

        optimizer = Adam(parameters)
        if restart > 0:
            optimizer_pt = checkpoint.OPTIMIZER_PT.format(
                log_dir=log_dir, epoch=restart)
            optimizer.load_state_dict(torch.load(optimizer_pt))
            if gpu:
                for state in optimizer.state.values():
                    for k, v in state.items():
                        if torch.is_tensor(v):
                            state[k] = v.cuda()

        epoch = restart if restart > 0 else -1
        while True:
            epoch += 1
            if epoch > epochs:
                break

            loss_avg, tloss_avg, closs_avg = 0., 0., 0.

            if epoch % 5 == 0:
                log_positive = []
                log_negative = []
                log_delta = []
                log_norm = []

            desc = 'Epoch #{0}'.format(epoch)
            for i in tqdm(range(batches_per_epoch), desc=desc):

                model.zero_grad()

                batch = next(batches)

                X = batch['X']
                if not getattr(model, 'batch_first', True):
#.........這裏部分代碼省略.........
開發者ID:instinct2k18,項目名稱:pyannote-audio,代碼行數:103,代碼來源:wtf_triplet_loss.py

示例3: fit

# 需要導入模塊: from torch.optim import Adam [as 別名]
# 或者: from torch.optim.Adam import load_state_dict [as 別名]
    def fit(self, model, feature_extraction, protocol, log_dir, subset='train',
            epochs=1000, restart=None, gpu=False):

        import tensorboardX
        writer = tensorboardX.SummaryWriter(log_dir=log_dir)

        checkpoint = Checkpoint(
            log_dir=log_dir, restart=(False if restart is None else True))
        try:
            batch_generator = SpeechSegmentGenerator(
                feature_extraction,
                per_label=self.per_label, per_fold=self.per_fold,
                duration=self.duration)
            batches = batch_generator(protocol, subset=subset)
            batch = next(batches)
        except OSError as e:
            del batch_generator.data_
            batch_generator = SpeechSegmentGenerator(
                feature_extraction,
                per_label=self.per_label, per_fold=self.per_fold,
                duration=self.duration, fast=False)
            batches = batch_generator(protocol, subset=subset)
            batch = next(batches)

        # one minute per speaker
        duration_per_epoch = 60. * batch_generator.n_labels
        duration_per_batch = self.duration * batch_generator.n_sequences_per_batch
        batches_per_epoch = int(np.ceil(duration_per_epoch / duration_per_batch))

        if restart is not None:
            weights_pt = checkpoint.WEIGHTS_PT.format(
                log_dir=log_dir, epoch=restart)
            model.load_state_dict(torch.load(weights_pt))

        if gpu:
            model = model.cuda()

        model.internal = False

        n_domains = len(batch_generator.domains_[self.domain])
        if n_domains < 2:
            raise ValueError('There must be more than one domain.')

        domain_clf = DomainClassifier(model.output_dim, n_domains, alpha=1.)
        if gpu:
            domain_clf = domain_clf.cuda()

        domain_loss = nn.CrossEntropyLoss()

        optimizer = Adam(list(model.parameters()) + list(domain_clf.parameters()))
        if restart is not None:
            optimizer_pt = checkpoint.OPTIMIZER_PT.format(
                log_dir=log_dir, epoch=restart)
            optimizer.load_state_dict(torch.load(optimizer_pt))
            if gpu:
                for state in optimizer.state.values():
                    for k, v in state.items():
                        if torch.is_tensor(v):
                            state[k] = v.cuda()

        restart = 0 if restart is None else restart + 1
        for epoch in range(restart, restart + epochs):

            tloss_avg = 0.
            dloss_avg = 0.
            loss_avg = 0.
            dacc_avg = 0.
            positive, negative = [], []
            if not model.normalize:
                norms = []

            desc = 'Epoch #{0}'.format(epoch)
            for i in tqdm(range(batches_per_epoch), desc=desc):

                model.zero_grad()

                batch = next(batches)

                X = batch['X']
                if not getattr(model, 'batch_first', True):
                    X = np.rollaxis(X, 0, 2)
                X = np.array(X, dtype=np.float32)
                X = Variable(torch.from_numpy(X))

                y = batch['y']
                y_domain = batch['y_{domain}'.format(domain=self.domain)]

                if gpu:
                    X = X.cuda()
                fX = model(X)

                if not model.normalize:
                    if gpu:
                        fX_ = fX.data.cpu().numpy()
                    else:
                        fX_ = fX.data.numpy()
                    norms.append(np.linalg.norm(fX_, axis=0))

                triplet_losses = []
                for d, domain in enumerate(np.unique(y_domain)):
#.........這裏部分代碼省略.........
開發者ID:instinct2k18,項目名稱:pyannote-audio,代碼行數:103,代碼來源:domain_adversarial_triplet_loss.py


注:本文中的torch.optim.Adam.load_state_dict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。