當前位置: 首頁>>代碼示例>>Python>>正文


Python Categorical.sample方法代碼示例

本文整理匯總了Python中torch.distributions.categorical.Categorical.sample方法的典型用法代碼示例。如果您正苦於以下問題:Python Categorical.sample方法的具體用法?Python Categorical.sample怎麽用?Python Categorical.sample使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.distributions.categorical.Categorical的用法示例。


在下文中一共展示了Categorical.sample方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: sample_gmm

# 需要導入模塊: from torch.distributions.categorical import Categorical [as 別名]
# 或者: from torch.distributions.categorical.Categorical import sample [as 別名]
def sample_gmm(batch_size, mixture_weights):
    cat = Categorical(probs=mixture_weights)
    cluster = cat.sample([batch_size]) # [B]
    mean = (cluster*10.).float().cuda()
    std = torch.ones([batch_size]).cuda() *5.
    norm = Normal(mean, std)
    samp = norm.sample()
    samp = samp.view(batch_size, 1)
    return samp
開發者ID:chriscremer,項目名稱:Other_Code,代碼行數:11,代碼來源:gmm_cleaned_v5.py

示例2: sample_true2

# 需要導入模塊: from torch.distributions.categorical import Categorical [as 別名]
# 或者: from torch.distributions.categorical.Categorical import sample [as 別名]
def sample_true2():
    cat = Categorical(probs= torch.tensor(true_mixture_weights))
    cluster = cat.sample()
    # print (cluster)
    # fsd
    norm = Normal(torch.tensor([cluster*10.]).float(), torch.tensor([5.0]).float())
    samp = norm.sample()
    # print (samp)
    return samp,cluster
開發者ID:chriscremer,項目名稱:Other_Code,代碼行數:11,代碼來源:gmm_batch_v2.py

示例3: OneHotCategorical

# 需要導入模塊: from torch.distributions.categorical import Categorical [as 別名]
# 或者: from torch.distributions.categorical.Categorical import sample [as 別名]
class OneHotCategorical(Distribution):
    r"""
    Creates a one-hot categorical distribution parameterized by `probs`.

    Samples are one-hot coded vectors of size probs.size(-1).

    See also: :func:`torch.distributions.Categorical`

    Example::

        >>> m = OneHotCategorical(torch.Tensor([ 0.25, 0.25, 0.25, 0.25 ]))
        >>> m.sample()  # equal probability of 0, 1, 2, 3
         0
         0
         1
         0
        [torch.FloatTensor of size 4]

    Args:
        probs (Tensor or Variable): event probabilities
    """
    params = {'probs': constraints.simplex}
    support = constraints.simplex
    has_enumerate_support = True

    def __init__(self, probs=None, logits=None):
        self._categorical = Categorical(probs, logits)
        batch_shape = self._categorical.probs.size()[:-1]
        event_shape = self._categorical.probs.size()[-1:]
        super(OneHotCategorical, self).__init__(batch_shape, event_shape)

    def sample(self, sample_shape=torch.Size()):
        sample_shape = torch.Size(sample_shape)
        probs = self._categorical.probs
        one_hot = probs.new(self._extended_shape(sample_shape)).zero_()
        indices = self._categorical.sample(sample_shape)
        if indices.dim() < one_hot.dim():
            indices = indices.unsqueeze(-1)
        return one_hot.scatter_(-1, indices, 1)

    def log_prob(self, value):
        indices = value.max(-1)[1]
        return self._categorical.log_prob(indices)

    def entropy(self):
        return self._categorical.entropy()

    def enumerate_support(self):
        probs = self._categorical.probs
        n = self.event_shape[0]
        if isinstance(probs, Variable):
            values = Variable(torch.eye(n, out=probs.data.new(n, n)))
        else:
            values = torch.eye(n, out=probs.new(n, n))
        values = values.view((n,) + (1,) * len(self.batch_shape) + (n,))
        return values.expand((n,) + self.batch_shape + (n,))
開發者ID:lxlhh,項目名稱:pytorch,代碼行數:58,代碼來源:one_hot_categorical.py

示例4: test_gmm_loss

# 需要導入模塊: from torch.distributions.categorical import Categorical [as 別名]
# 或者: from torch.distributions.categorical.Categorical import sample [as 別名]
    def test_gmm_loss(self):
        """ Test case 1 """
        n_samples = 10000

        means = torch.Tensor([[0., 0.],
                              [1., 1.],
                              [-1., 1.]])
        stds = torch.Tensor([[.03, .05],
                             [.02, .1],
                             [.1, .03]])
        pi = torch.Tensor([.2, .3, .5])

        cat_dist = Categorical(pi)
        indices = cat_dist.sample((n_samples,)).long()
        rands = torch.randn(n_samples, 2)

        samples = means[indices] + rands * stds[indices]

        class _model(nn.Module):
            def __init__(self, gaussians):
                super().__init__()
                self.means = nn.Parameter(torch.Tensor(1, gaussians, 2).normal_())
                self.pre_stds = nn.Parameter(torch.Tensor(1, gaussians, 2).normal_())
                self.pi = nn.Parameter(torch.Tensor(1, gaussians).normal_())

            def forward(self, *inputs):
                return self.means, torch.exp(self.pre_stds), f.softmax(self.pi, dim=1)

        model = _model(3)
        optimizer = torch.optim.Adam(model.parameters())

        iterations = 100000
        log_step = iterations // 10
        pbar = tqdm(total=iterations)
        cum_loss = 0
        for i in range(iterations):
            batch = samples[torch.LongTensor(128).random_(0, n_samples)]
            m, s, p = model.forward()
            loss = gmm_loss(batch, m, s, p)
            cum_loss += loss.item()
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            pbar.set_postfix_str("avg_loss={:10.6f}".format(
                cum_loss / (i + 1)))
            pbar.update(1)
            if i % log_step == log_step - 1:
                print(m)
                print(s)
                print(p)
開發者ID:hbcbh1999,項目名稱:world-models,代碼行數:52,代碼來源:test_gmm.py

示例5: sample_true

# 需要導入模塊: from torch.distributions.categorical import Categorical [as 別名]
# 或者: from torch.distributions.categorical.Categorical import sample [as 別名]
def sample_true(batch_size):
    # print (true_mixture_weights.shape)
    cat = Categorical(probs=torch.tensor(true_mixture_weights))
    cluster = cat.sample([batch_size]) # [B]
    mean = (cluster*10.).float()
    std = torch.ones([batch_size]) *5.
    # print (cluster.shape)
    # fsd
    # norm = Normal(torch.tensor([cluster*10.]).float(), torch.tensor([5.0]).float())
    norm = Normal(mean, std)
    samp = norm.sample()
    # print (samp.shape)
    # fadsf
    samp = samp.view(batch_size, 1)
    return samp
開發者ID:chriscremer,項目名稱:Other_Code,代碼行數:17,代碼來源:gmm_batch_v2.py

示例6: reinforce_baseline

# 需要導入模塊: from torch.distributions.categorical import Categorical [as 別名]
# 或者: from torch.distributions.categorical.Categorical import sample [as 別名]
def reinforce_baseline(surrogate, x, logits, mixtureweights, k=1, get_grad=False):
    B = logits.shape[0]
    probs = torch.softmax(logits, dim=1)
    outputs = {}

    cat = Categorical(probs=probs)

    grads =[]
    # net_loss = 0
    for jj in range(k):

        cluster_H = cat.sample()
        outputs['logq'] = logq = cat.log_prob(cluster_H).view(B,1)
        outputs['logpx_given_z'] = logpx_given_z = logprob_undercomponent(x, component=cluster_H)
        outputs['logpz'] = logpz = torch.log(mixtureweights[cluster_H]).view(B,1)
        logpxz = logpx_given_z + logpz #[B,1]

        surr_pred = surrogate.net(x)

        outputs['f'] = f = logpxz - logq - 1. 
        # outputs['net_loss'] = net_loss = net_loss - torch.mean((f.detach() ) * logq)
        outputs['net_loss'] = net_loss = - torch.mean((f.detach() - surr_pred.detach()) * logq)
        # net_loss += - torch.mean( -logq.detach()*logq)

        # surr_loss = torch.mean(torch.abs(f.detach() - surr_pred))

        grad_logq =  torch.autograd.grad([torch.mean(logq)], [logits], create_graph=True, retain_graph=True)[0]
        surr_loss = torch.mean(((f.detach() - surr_pred) * grad_logq )**2)

        if get_grad:
            grad = torch.autograd.grad([net_loss], [logits], create_graph=True, retain_graph=True)[0]
            grads.append(grad)

    # net_loss = net_loss/ k

    if get_grad:
        grads = torch.stack(grads)
        # print (grads.shape)
        outputs['grad_avg'] = torch.mean(torch.mean(grads, dim=0),dim=0)
        outputs['grad_std'] = torch.std(grads, dim=0)[0]

    outputs['surr_loss'] = surr_loss
    # return net_loss, f, logpx_given_z, logpz, logq
    return outputs
開發者ID:chriscremer,項目名稱:Other_Code,代碼行數:46,代碼來源:gmm_cleaned_v5.py

示例7: reinforce

# 需要導入模塊: from torch.distributions.categorical import Categorical [as 別名]
# 或者: from torch.distributions.categorical.Categorical import sample [as 別名]
def reinforce(x, logits, mixtureweights, k=1):
    B = logits.shape[0]
    probs = torch.softmax(logits, dim=1)

    cat = Categorical(probs=probs)

    net_loss = 0
    for jj in range(k):

        cluster_H = cat.sample()
        logq = cat.log_prob(cluster_H).view(B,1)

        logpx_given_z = logprob_undercomponent(x, component=cluster_H)
        logpz = torch.log(mixtureweights[cluster_H]).view(B,1)
        logpxz = logpx_given_z + logpz #[B,1]
        f = logpxz - logq
        net_loss += - torch.mean((f.detach() - 1.) * logq)
        # net_loss += - torch.mean( -logq.detach()*logq)

    net_loss = net_loss/ k

    return net_loss, f, logpx_given_z, logpz, logq
開發者ID:chriscremer,項目名稱:Other_Code,代碼行數:24,代碼來源:gmm_cleaned_v3.py

示例8: OneHotCategorical

# 需要導入模塊: from torch.distributions.categorical import Categorical [as 別名]
# 或者: from torch.distributions.categorical.Categorical import sample [as 別名]
class OneHotCategorical(Distribution):
    r"""
    Creates a one-hot categorical distribution parameterized by :attr:`probs` or
    :attr:`logits`.

    Samples are one-hot coded vectors of size ``probs.size(-1)``.

    .. note:: :attr:`probs` will be normalized to be summing to 1.

    See also: :func:`torch.distributions.Categorical` for specifications of
    :attr:`probs` and :attr:`logits`.

    Example::

        >>> m = OneHotCategorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ]))
        >>> m.sample()  # equal probability of 0, 1, 2, 3
        tensor([ 0.,  0.,  0.,  1.])

    Args:
        probs (Tensor): event probabilities
        logits (Tensor): event log probabilities
    """
    arg_constraints = {'probs': constraints.simplex}
    support = constraints.simplex
    has_enumerate_support = True

    def __init__(self, probs=None, logits=None, validate_args=None):
        self._categorical = Categorical(probs, logits)
        batch_shape = self._categorical.batch_shape
        event_shape = self._categorical.param_shape[-1:]
        super(OneHotCategorical, self).__init__(batch_shape, event_shape, validate_args=validate_args)

    def _new(self, *args, **kwargs):
        return self._categorical._new(*args, **kwargs)

    @property
    def probs(self):
        return self._categorical.probs

    @property
    def logits(self):
        return self._categorical.logits

    @property
    def mean(self):
        return self._categorical.probs

    @property
    def variance(self):
        return self._categorical.probs * (1 - self._categorical.probs)

    @property
    def param_shape(self):
        return self._categorical.param_shape

    def sample(self, sample_shape=torch.Size()):
        sample_shape = torch.Size(sample_shape)
        probs = self._categorical.probs
        one_hot = probs.new(self._extended_shape(sample_shape)).zero_()
        indices = self._categorical.sample(sample_shape)
        if indices.dim() < one_hot.dim():
            indices = indices.unsqueeze(-1)
        return one_hot.scatter_(-1, indices, 1)

    def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)
        indices = value.max(-1)[1]
        return self._categorical.log_prob(indices)

    def entropy(self):
        return self._categorical.entropy()

    def enumerate_support(self):
        n = self.event_shape[0]
        values = self._new((n, n))
        torch.eye(n, out=values)
        values = values.view((n,) + (1,) * len(self.batch_shape) + (n,))
        return values.expand((n,) + self.batch_shape + (n,))
開發者ID:inkawhich,項目名稱:pytorch,代碼行數:81,代碼來源:one_hot_categorical.py

示例9: print

# 需要導入模塊: from torch.distributions.categorical import Categorical [as 別名]
# 或者: from torch.distributions.categorical.Categorical import sample [as 別名]




#REINFORCE
print ('REINFORCE')

# def sample_reinforce_given_class(logits, samp):    
#     return logprob

grads = []
for i in range (N):

    dist = Categorical(logits=logits)
    samp = dist.sample()
    logprob = dist.log_prob(samp)
    reward = f(samp) 
    gradlogprob = torch.autograd.grad(outputs=logprob, inputs=(logits), retain_graph=True)[0]
    grads.append(reward*gradlogprob)
    
print ()
grads = torch.stack(grads).view(N,C)
# print (grads.shape)
grad_mean_reinforce = torch.mean(grads,dim=0)
grad_std_reinforce = torch.std(grads,dim=0)

print ('REINFORCE')
print ('mean:', grad_mean_reinforce)
print ('std:', grad_std_reinforce)
print ()
開發者ID:chriscremer,項目名稱:Other_Code,代碼行數:32,代碼來源:plotting_cat_grads_dist.py

示例10: LogitRelaxedBernoulli

# 需要導入模塊: from torch.distributions.categorical import Categorical [as 別名]
# 或者: from torch.distributions.categorical.Categorical import sample [as 別名]
    # dist = LogitRelaxedBernoulli(torch.Tensor([1.]), bern_param)
    # dist_bernoulli = Bernoulli(bern_param)
    C= 2
    n_components = C
    B=1
    probs = torch.ones(B,C)
    bern_param = bern_param.view(B,1)
    aa = 1 - bern_param
    probs = torch.cat([aa, bern_param], dim=1)

    cat = Categorical(probs= probs)

    grads = []
    for i in range(n):
        b = cat.sample()
        logprob = cat.log_prob(b.detach())
        # b_ = torch.argmax(z, dim=1)

        logprobgrad = torch.autograd.grad(outputs=logprob, inputs=(bern_param), retain_graph=True)[0]
        grad = f(b) * logprobgrad

        grads.append(grad[0][0].data.numpy())

    print ('Grad Estimator: Reinfoce categorical')
    print ('Grad mean', np.mean(grads))
    print ('Grad std', np.std(grads))
    print ()

    reinforce_cat_grad_means.append(np.mean(grads))
    reinforce_cat_grad_stds.append(np.std(grads))
開發者ID:chriscremer,項目名稱:Other_Code,代碼行數:32,代碼來源:is_pz_grad_dependent_on_theta_2.py

示例11: simplax

# 需要導入模塊: from torch.distributions.categorical import Categorical [as 別名]
# 或者: from torch.distributions.categorical.Categorical import sample [as 別名]
def simplax():



    def show_surr_preds():

        batch_size = 1

        rows = 3
        cols = 1
        fig = plt.figure(figsize=(10+cols,4+rows), facecolor='white') #, dpi=150)

        for i in range(rows):

            x = sample_true(1).cuda() #.view(1,1)
            logits = encoder.net(x)
            probs = torch.softmax(logits, dim=1)
            cat = RelaxedOneHotCategorical(probs=probs, temperature=torch.tensor([1.]).cuda())
            cluster_S = cat.rsample()
            cluster_H = H(cluster_S)
            logprob_cluster = cat.log_prob(cluster_S.detach()).view(batch_size,1)
            check_nan(logprob_cluster)

            z = cluster_S

            n_evals = 40
            x1 = np.linspace(-9,205, n_evals)
            x = torch.from_numpy(x1).view(n_evals,1).float().cuda()
            z = z.repeat(n_evals,1)
            cluster_H = cluster_H.repeat(n_evals,1)
            xz = torch.cat([z,x], dim=1) 

            logpxz = logprob_undercomponent(x, component=cluster_H, needsoftmax_mixtureweight=needsoftmax_mixtureweight, cuda=True)
            f = logpxz #- logprob_cluster

            surr_pred = surrogate.net(xz)
            surr_pred = surr_pred.data.cpu().numpy()
            f = f.data.cpu().numpy()

            col =0
            row = i
            # print (row)
            ax = plt.subplot2grid((rows,cols), (row,col), frameon=False, colspan=1, rowspan=1)

            ax.plot(x1,surr_pred, label='Surr')
            ax.plot(x1,f, label='f')
            ax.set_title(str(cluster_H[0]))
            ax.legend()


        # save_dir = home+'/Documents/Grad_Estimators/GMM/'
        plt_path = exp_dir+'gmm_surr.png'
        plt.savefig(plt_path)
        print ('saved training plot', plt_path)
        plt.close()




    def plot_dist():


        mixture_weights = torch.softmax(needsoftmax_mixtureweight, dim=0)

        rows = 1
        cols = 1
        fig = plt.figure(figsize=(10+cols,4+rows), facecolor='white') #, dpi=150)

        col =0
        row = 0
        ax = plt.subplot2grid((rows,cols), (row,col), frameon=False, colspan=1, rowspan=1)


        xs = np.linspace(-9,205, 300)
        sum_ = np.zeros(len(xs))

        # C = 20
        for c in range(n_components):
            m = Normal(torch.tensor([c*10.]).float(), torch.tensor([5.0]).float())
            ys = []
            for x in xs:
                # component_i = (torch.exp(m.log_prob(x) )* ((c+5.) / 290.)).numpy()
                component_i = (torch.exp(m.log_prob(x) )* mixture_weights[c]).detach().cpu().numpy()


                ys.append(component_i)

            ys = np.reshape(np.array(ys), [-1])
            sum_ += ys
            ax.plot(xs, ys, label='')

        ax.plot(xs, sum_, label='')

        # save_dir = home+'/Documents/Grad_Estimators/GMM/'
        plt_path = exp_dir+'gmm_plot_dist.png'
        plt.savefig(plt_path)
        print ('saved training plot', plt_path)
        plt.close()
        

#.........這裏部分代碼省略.........
開發者ID:chriscremer,項目名稱:Other_Code,代碼行數:103,代碼來源:gmm_batch_fewerclasses.py

示例12: range

# 需要導入模塊: from torch.distributions.categorical import Categorical [as 別名]
# 或者: from torch.distributions.categorical.Categorical import sample [as 別名]
    L2_losses = []
    steps_list = []
    for step in range(n_steps):

        optim.zero_grad()

        loss = 0
        net_loss = 0
        for i in range(batch_size):
            x = sample_true()
            logits = encoder.net(x)
            # print (logits.shape)
            # print (torch.softmax(logits, dim=0))
            # fsfd
            cat = Categorical(probs= torch.softmax(logits, dim=0))
            cluster = cat.sample()
            logprob_cluster = cat.log_prob(cluster.detach())
            # print (logprob_cluster)
            pxz = logprob_undercomponent(x, component=cluster, needsoftmax_mixtureweight=needsoftmax_mixtureweight, cuda=False)
            f = pxz - logprob_cluster
            # print (f)
            # logprob = logprob_givenmixtureeweights(x, needsoftmax_mixtureweight)
            net_loss += -f.detach() * logprob_cluster
            loss += -f
        loss = loss / batch_size
        net_loss = net_loss / batch_size

        # print (loss, net_loss)

        loss.backward(retain_graph=True)  
        optim.step()
開發者ID:chriscremer,項目名稱:Other_Code,代碼行數:33,代碼來源:gmm.py


注:本文中的torch.distributions.categorical.Categorical.sample方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。