本文整理匯總了Python中theano.gof.EquilibriumDB類的典型用法代碼示例。如果您正苦於以下問題:Python EquilibriumDB類的具體用法?Python EquilibriumDB怎麽用?Python EquilibriumDB使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了EquilibriumDB類的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: import
GpuSoftmaxWithBias,
GpuSoftmax,
)
from .elemwise import GpuElemwise, GpuDimShuffle, GpuCAReduceCuda, GpuCAReduceCPY
from .subtensor import (
GpuIncSubtensor,
GpuSubtensor,
GpuAdvancedSubtensor1,
GpuAdvancedIncSubtensor1,
GpuAdvancedIncSubtensor1_dev20,
)
from .opt_util import alpha_merge, output_merge
_logger = logging.getLogger("theano.sandbox.gpuarray.opt")
gpu_optimizer = EquilibriumDB()
gpu_cut_copies = EquilibriumDB()
gpu_seqopt = SequenceDB()
# Don't register this right now
conv_groupopt = LocalGroupDB()
conv_groupopt.__name__ = "gpua_conv_opts"
gpu_seqopt.register("gpuarray_local_optimiziations", gpu_optimizer, 1, "fast_compile", "fast_run", "gpuarray")
gpu_seqopt.register("gpuarray_cut_transfers", gpu_cut_copies, 2, "fast_compile", "fast_run", "gpuarray")
# do not add 'fast_run' to these two as this would always enable gpuarray mode
optdb.register("gpuarray_opt", gpu_seqopt, optdb.__position__.get("add_destroy_handler", 49.5) - 1, "gpuarray")
示例2: import
gpu_alloc,
gpu_shape,
GpuAlloc,
GpuShape,
GpuReshape,
GpuEye)
from theano.sandbox.gpuarray.blas import gpu_dot22, GpuGemv, GpuGemm
from theano.sandbox.gpuarray.nnet import (GpuCrossentropySoftmaxArgmax1HotWithBias,
GpuCrossentropySoftmax1HotWithBiasDx)
from theano.sandbox.gpuarray.elemwise import (GpuElemwise, _is_scalar,
GpuDimShuffle, GpuCAReduce)
from theano.sandbox.gpuarray.subtensor import GpuIncSubtensor, GpuSubtensor
from theano.sandbox.gpuarray.type import GpuArrayConstant
gpu_optimizer = EquilibriumDB()
gpu_cut_copies = EquilibriumDB()
gpu_seqopt = SequenceDB()
gpu_seqopt.register('gpuarray_local_optimiziations', gpu_optimizer, 1,
'fast_run', 'inplace', 'gpuarray')
gpu_seqopt.register('gpuarray_cut_transfers', gpu_cut_copies, 2,
'fast_run', 'gpuarray')
# do not add 'fast_run' to these two as this would always enable gpuarray mode
optdb.register('gpuarray_opt', gpu_seqopt,
optdb.__position__.get('add_destroy_handler', 49.5) - 1,
'gpuarray')
def register_opt(*tags, **kwargs):
示例3: import
HostFromGpu, GpuFromHost,
GpuSplit, GpuContiguous,
gpu_alloc, GpuAlloc, GpuReshape,
GpuEye, gpu_join, GpuJoin)
from .blas import gpu_dot22, GpuGemv, GpuGemm, GpuGer
from .conv import GpuConv
from .nnet import (GpuCrossentropySoftmaxArgmax1HotWithBias,
GpuCrossentropySoftmax1HotWithBiasDx,
GpuSoftmaxWithBias, GpuSoftmax)
from .elemwise import (GpuElemwise, GpuDimShuffle, GpuCAReduceCuda,
GpuCAReduceCPY)
from .subtensor import (GpuIncSubtensor, GpuSubtensor,
GpuAdvancedIncSubtensor1,
GpuAdvancedIncSubtensor1_dev20)
gpu_optimizer = EquilibriumDB()
gpu_cut_copies = EquilibriumDB()
gpu_seqopt = SequenceDB()
gpu_seqopt.register('gpuarray_local_optimiziations', gpu_optimizer, 1,
'fast_compile', 'fast_run', 'inplace', 'gpuarray')
gpu_seqopt.register('gpuarray_cut_transfers', gpu_cut_copies, 2,
'fast_compile', 'fast_run', 'gpuarray')
# do not add 'fast_run' to these two as this would always enable gpuarray mode
optdb.register('gpuarray_opt', gpu_seqopt,
optdb.__position__.get('add_destroy_handler', 49.5) - 1,
'gpuarray')
示例4: import
GpuCrossentropySoftmaxArgmax1HotWithBias,
GpuCrossentropySoftmax1HotWithBiasDx,
GpuSoftmaxWithBias,
GpuSoftmax,
)
from theano.sandbox.gpuarray.elemwise import GpuElemwise, _is_scalar, GpuDimShuffle, GpuCAReduceCuda
from theano.sandbox.gpuarray.subtensor import (
GpuIncSubtensor,
GpuSubtensor,
GpuAdvancedIncSubtensor1,
GpuAdvancedIncSubtensor1_dev20,
)
from theano.sandbox.gpuarray.type import GpuArrayConstant
gpu_optimizer = EquilibriumDB()
gpu_cut_copies = EquilibriumDB()
gpu_seqopt = SequenceDB()
gpu_seqopt.register("gpuarray_local_optimiziations", gpu_optimizer, 1, "fast_run", "inplace", "gpuarray")
gpu_seqopt.register("gpuarray_cut_transfers", gpu_cut_copies, 2, "fast_run", "gpuarray")
# do not add 'fast_run' to these two as this would always enable gpuarray mode
optdb.register("gpuarray_opt", gpu_seqopt, optdb.__position__.get("add_destroy_handler", 49.5) - 1, "gpuarray")
def register_opt(*tags, **kwargs):
def f(local_opt):
name = (kwargs and kwargs.pop("name")) or local_opt.__name__
gpu_optimizer.register(name, local_opt, "fast_run", "gpuarray", *tags)
return local_opt
示例5: zip
", ".join([var.type.dtype_specs()[1]+" *"+name for var,name in zip(inputs,in_name) + zip(out_node.outputs,out_name)]),
c_code,
"pycuda_elemwise_kernel_%s"%str(self.scalar_op),
preamble="""#include<Python.h>
#include <numpy/arrayobject.h>""")
return out_node
def perform(self, node, inputs, out):
#TODO assert all input have the same shape
z, = out
if z[0] is None or z[0].shape!=inputs[0].shape:
z[0] = theano.sandbox.cuda.CudaNdarray.zeros(inputs[0].shape)
i = inputs + z
self.pycuda_fct(*i)
pycuda_optimizer = EquilibriumDB()
gpu_seqopt.register("pycuda_optimizer", pycuda_optimizer, 1.5, "fast_run")
@local_optimizer([])
def local_pycuda_gpu_elemwise(node):
"""
GpuElemwise -> PycudaElemwiseSourceModuleOp
"""
if isinstance(node.op, GpuElemwise):
if not any([ any(i.type.broadcastable) for i in node.inputs]) and all([i.ndim<=2 for i in node.inputs]):
new_op = PycudaElemwiseSourceModuleOp(node.op.scalar_op, node.op.inplace_pattern)(*node.inputs)
return [new_op]
pycuda_optimizer.register("local_pycuda_gpu_elemwise", local_pycuda_gpu_elemwise)
@local_optimizer([])
示例6: pycuda_fct
grid = (int(numpy.ceil(inputs[0][0].size / 512.)), 1)
block = (512, 1, 1)
else:
grid = (1, 1)
block = (inputs[0][0].shape[0], inputs[0][0].shape[1], 1)
pycuda_fct(inputs[0][0], inputs[1][0], z[0],
numpy.intc(inputs[1][0].size), block=block,
grid=grid)
thunk.inputs = inputs
thunk.outputs = outputs
thunk.lazy = False
return thunk
pycuda_optimizer = EquilibriumDB()
gpu_seqopt.register("pycuda_optimizer", pycuda_optimizer, 1.5, "fast_run")
@local_optimizer([GpuElemwise])
def local_pycuda_gpu_elemwise(node):
"""
GpuElemwise -> PycudaElemwiseSourceModuleOp
"""
if isinstance(node.op, GpuElemwise):
if (not any([any(i.type.broadcastable) for i in node.inputs]) and
all([i.ndim <= 2 for i in node.inputs])):
new_op = PycudaElemwiseSourceModuleOp(node.op.scalar_op,
node.op.inplace_pattern)(
*node.inputs)
return [new_op]