本文整理匯總了Python中tensorflow.lite.python.interpreter.Interpreter類的典型用法代碼示例。如果您正苦於以下問題:Python Interpreter類的具體用法?Python Interpreter怎麽用?Python Interpreter使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Interpreter類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testFloatWithShapesArray
def testFloatWithShapesArray(self):
in_tensor = array_ops.placeholder(
shape=[1, 16, 16, 3], dtype=dtypes.float32)
_ = in_tensor + in_tensor
sess = session.Session()
# Write graph to file.
graph_def_file = os.path.join(self.get_temp_dir(), 'model.pb')
write_graph(sess.graph_def, '', graph_def_file, False)
sess.close()
# Convert model and ensure model is not None.
converter = lite.TFLiteConverter.from_frozen_graph(
graph_def_file, ['Placeholder'], ['add'],
input_shapes={'Placeholder': [1, 16, 16, 3]})
tflite_model = converter.convert()
self.assertTrue(tflite_model)
# Check values from converted model.
interpreter = Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(1, len(input_details))
self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all())
示例2: testPostTrainingCalibrateAndQuantize
def testPostTrainingCalibrateAndQuantize(self):
func, calibration_gen = self._getCalibrationQuantizeModel()
# Convert float model.
float_converter = lite.TFLiteConverterV2.from_concrete_functions([func])
float_tflite = float_converter.convert()
self.assertTrue(float_tflite)
# Convert quantized model.
quantized_converter = lite.TFLiteConverterV2.from_concrete_functions([func])
quantized_converter.optimizations = [lite.Optimize.DEFAULT]
quantized_converter.representative_dataset = calibration_gen
quantized_tflite = quantized_converter.convert()
self.assertTrue(quantized_tflite)
# The default input and output types should be float.
interpreter = Interpreter(model_content=quantized_tflite)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(1, len(input_details))
self.assertEqual(np.float32, input_details[0]['dtype'])
output_details = interpreter.get_output_details()
self.assertEqual(1, len(output_details))
self.assertEqual(np.float32, output_details[0]['dtype'])
# Ensure that the quantized weights tflite model is smaller.
self.assertLess(len(quantized_tflite), len(float_tflite))
示例3: testCalibrateAndQuantizeBuiltinInt8
def testCalibrateAndQuantizeBuiltinInt8(self):
func, calibration_gen = self._getCalibrationQuantizeModel()
# Convert float model.
float_converter = lite.TFLiteConverterV2.from_concrete_functions([func])
float_tflite = float_converter.convert()
self.assertTrue(float_tflite)
# Convert model by specifying target spec (instead of optimizations), since
# when targeting an integer only backend, quantization is mandatory.
quantized_converter = lite.TFLiteConverterV2.from_concrete_functions([func])
quantized_converter.target_spec.supported_ops = [
lite.OpsSet.TFLITE_BUILTINS_INT8
]
quantized_converter.representative_dataset = calibration_gen
quantized_tflite = quantized_converter.convert()
self.assertTrue(quantized_tflite)
# The default input and output types should be float.
interpreter = Interpreter(model_content=quantized_tflite)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(1, len(input_details))
self.assertEqual(np.float32, input_details[0]['dtype'])
output_details = interpreter.get_output_details()
self.assertEqual(1, len(output_details))
self.assertEqual(np.float32, output_details[0]['dtype'])
# Ensure that the quantized weights tflite model is smaller.
self.assertLess(len(quantized_tflite), len(float_tflite))
示例4: testNoneBatchSize
def testNoneBatchSize(self):
"""Test a SavedModel, with None in input tensor's shape."""
saved_model_dir = self._createSavedModel(shape=[None, 16, 16, 3])
converter = lite.TFLiteConverter.from_saved_model(saved_model_dir)
tflite_model = converter.convert()
self.assertTrue(tflite_model)
# Check values from converted model.
interpreter = Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(2, len(input_details))
self.assertEqual('inputA', input_details[0]['name'])
self.assertEqual(np.float32, input_details[0]['dtype'])
self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all())
self.assertEqual((0., 0.), input_details[0]['quantization'])
self.assertEqual('inputB', input_details[1]['name'])
self.assertEqual(np.float32, input_details[1]['dtype'])
self.assertTrue(([1, 16, 16, 3] == input_details[1]['shape']).all())
self.assertEqual((0., 0.), input_details[1]['quantization'])
output_details = interpreter.get_output_details()
self.assertEqual(1, len(output_details))
self.assertEqual('add', output_details[0]['name'])
self.assertEqual(np.float32, output_details[0]['dtype'])
self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all())
self.assertEqual((0., 0.), output_details[0]['quantization'])
示例5: testFloat
def testFloat(self):
in_tensor = array_ops.placeholder(
shape=[1, 16, 16, 3], dtype=dtypes.float32)
out_tensor = in_tensor + in_tensor
sess = session.Session()
# Convert model and ensure model is not None.
converter = lite.TFLiteConverter.from_session(sess, [in_tensor],
[out_tensor])
tflite_model = converter.convert()
self.assertTrue(tflite_model)
# Check values from converted model.
interpreter = Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(1, len(input_details))
self.assertEqual('Placeholder', input_details[0]['name'])
self.assertEqual(np.float32, input_details[0]['dtype'])
self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all())
self.assertEqual((0., 0.), input_details[0]['quantization'])
output_details = interpreter.get_output_details()
self.assertEqual(1, len(output_details))
self.assertEqual('add', output_details[0]['name'])
self.assertEqual(np.float32, output_details[0]['dtype'])
self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all())
self.assertEqual((0., 0.), output_details[0]['quantization'])
示例6: testOrderInputArrays
def testOrderInputArrays(self):
"""Test a SavedModel ordering of input arrays."""
saved_model_dir = self._createSavedModel(shape=[1, 16, 16, 3])
converter = lite.TFLiteConverter.from_saved_model(
saved_model_dir, input_arrays=['inputB', 'inputA'])
tflite_model = converter.convert()
self.assertTrue(tflite_model)
# Check values from converted model.
interpreter = Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(2, len(input_details))
self.assertEqual('inputA', input_details[0]['name'])
self.assertEqual(np.float32, input_details[0]['dtype'])
self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all())
self.assertEqual((0., 0.), input_details[0]['quantization'])
self.assertEqual('inputB', input_details[1]['name'])
self.assertEqual(np.float32, input_details[1]['dtype'])
self.assertTrue(([1, 16, 16, 3] == input_details[1]['shape']).all())
self.assertEqual((0., 0.), input_details[1]['quantization'])
output_details = interpreter.get_output_details()
self.assertEqual(1, len(output_details))
self.assertEqual('add', output_details[0]['name'])
self.assertEqual(np.float32, output_details[0]['dtype'])
self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all())
self.assertEqual((0., 0.), output_details[0]['quantization'])
示例7: testDumpGraphviz
def testDumpGraphviz(self):
in_tensor = array_ops.placeholder(
shape=[1, 16, 16, 3], dtype=dtypes.float32)
out_tensor = in_tensor + in_tensor
sess = session.Session()
# Convert model and ensure model is not None.
converter = lite.TFLiteConverter.from_session(sess, [in_tensor],
[out_tensor])
graphviz_dir = self.get_temp_dir()
converter.dump_graphviz_dir = graphviz_dir
tflite_model = converter.convert()
self.assertTrue(tflite_model)
# Ensure interpreter is able to allocate and check graphviz data.
interpreter = Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
num_items_graphviz = len(os.listdir(graphviz_dir))
self.assertTrue(num_items_graphviz)
# Convert model and ensure model is not None.
converter = lite.TFLiteConverter.from_session(sess, [in_tensor],
[out_tensor])
graphviz_dir = self.get_temp_dir()
converter.dump_graphviz_dir = graphviz_dir
converter.dump_graphviz_video = True
tflite_model = converter.convert()
self.assertTrue(tflite_model)
# Ensure graphviz folder has more data after using video flag.
num_items_graphviz_video = len(os.listdir(graphviz_dir))
self.assertTrue(num_items_graphviz_video > num_items_graphviz)
示例8: testDefaultRangesStats
def testDefaultRangesStats(self):
in_tensor = array_ops.placeholder(
shape=[1, 16, 16, 3], dtype=dtypes.float32)
out_tensor = in_tensor + in_tensor
sess = session.Session()
# Convert model and ensure model is not None.
converter = lite.TFLiteConverter.from_session(sess, [in_tensor],
[out_tensor])
converter.inference_type = lite_constants.QUANTIZED_UINT8
converter.quantized_input_stats = {'Placeholder': (0., 1.)} # mean, std_dev
converter.default_ranges_stats = (0, 6) # min, max
tflite_model = converter.convert()
self.assertTrue(tflite_model)
# Check values from converted model.
interpreter = Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(1, len(input_details))
self.assertEqual('Placeholder', input_details[0]['name'])
self.assertEqual(np.uint8, input_details[0]['dtype'])
self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all())
self.assertEqual((1., 0.), input_details[0]['quantization'])
output_details = interpreter.get_output_details()
self.assertEqual(1, len(output_details))
self.assertEqual('add', output_details[0]['name'])
self.assertEqual(np.uint8, output_details[0]['dtype'])
self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all())
self.assertTrue(output_details[0]['quantization'][0] > 0) # scale
示例9: testSequentialModelInputShape
def testSequentialModelInputShape(self):
"""Test a Sequential tf.keras model testing input shapes argument."""
keras_file = self._getSequentialModel()
# Passing in shape of invalid input array raises error.
with self.assertRaises(ValueError) as error:
converter = lite.TFLiteConverter.from_keras_model_file(
keras_file, input_shapes={'invalid-input': [2, 3]})
self.assertEqual(
"Invalid tensor 'invalid-input' found in tensor shapes map.",
str(error.exception))
# Passing in shape of valid input array.
converter = lite.TFLiteConverter.from_keras_model_file(
keras_file, input_shapes={'dense_input': [2, 3]})
tflite_model = converter.convert()
os.remove(keras_file)
self.assertTrue(tflite_model)
# Check input shape from converted model.
interpreter = Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(1, len(input_details))
self.assertEqual('dense_input', input_details[0]['name'])
self.assertTrue(([2, 3] == input_details[0]['shape']).all())
示例10: testFunctionalSequentialModel
def testFunctionalSequentialModel(self):
"""Test a Functional tf.keras model containing a Sequential model."""
with session.Session().as_default():
model = keras.models.Sequential()
model.add(keras.layers.Dense(2, input_shape=(3,)))
model.add(keras.layers.RepeatVector(3))
model.add(keras.layers.TimeDistributed(keras.layers.Dense(3)))
model = keras.models.Model(model.input, model.output)
model.compile(
loss=keras.losses.MSE,
optimizer=keras.optimizers.RMSprop(),
metrics=[keras.metrics.categorical_accuracy],
sample_weight_mode='temporal')
x = np.random.random((1, 3))
y = np.random.random((1, 3, 3))
model.train_on_batch(x, y)
model.predict(x)
model.predict(x)
fd, keras_file = tempfile.mkstemp('.h5')
try:
keras.models.save_model(model, keras_file)
finally:
os.close(fd)
# Convert to TFLite model.
converter = lite.TFLiteConverter.from_keras_model_file(keras_file)
tflite_model = converter.convert()
self.assertTrue(tflite_model)
# Check tensor details of converted model.
interpreter = Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(1, len(input_details))
self.assertEqual('dense_input', input_details[0]['name'])
self.assertEqual(np.float32, input_details[0]['dtype'])
self.assertTrue(([1, 3] == input_details[0]['shape']).all())
self.assertEqual((0., 0.), input_details[0]['quantization'])
output_details = interpreter.get_output_details()
self.assertEqual(1, len(output_details))
self.assertEqual('time_distributed/Reshape_1', output_details[0]['name'])
self.assertEqual(np.float32, output_details[0]['dtype'])
self.assertTrue(([1, 3, 3] == output_details[0]['shape']).all())
self.assertEqual((0., 0.), output_details[0]['quantization'])
# Check inference of converted model.
input_data = np.array([[1, 2, 3]], dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
tflite_result = interpreter.get_tensor(output_details[0]['index'])
keras_model = keras.models.load_model(keras_file)
keras_result = keras_model.predict(input_data)
np.testing.assert_almost_equal(tflite_result, keras_result, 5)
os.remove(keras_file)
示例11: testGraphDefBasic
def testGraphDefBasic(self):
in_tensor = array_ops.placeholder(
shape=[1, 16, 16, 3], dtype=dtypes.float32, name="input")
_ = in_tensor + in_tensor
sess = session.Session()
tflite_model = convert.toco_convert_graph_def(
sess.graph_def, [("input", [1, 16, 16, 3])], ["add"],
inference_type=lite_constants.FLOAT)
self.assertTrue(tflite_model)
# Check values from converted model.
interpreter = Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(1, len(input_details))
self.assertEqual("input", input_details[0]["name"])
self.assertEqual(np.float32, input_details[0]["dtype"])
self.assertTrue(([1, 16, 16, 3] == input_details[0]["shape"]).all())
self.assertEqual((0., 0.), input_details[0]["quantization"])
output_details = interpreter.get_output_details()
self.assertEqual(1, len(output_details))
self.assertEqual("add", output_details[0]["name"])
self.assertEqual(np.float32, output_details[0]["dtype"])
self.assertTrue(([1, 16, 16, 3] == output_details[0]["shape"]).all())
self.assertEqual((0., 0.), output_details[0]["quantization"])
示例12: testSequentialModelInputShape
def testSequentialModelInputShape(self):
"""Test a Sequential tf.keras model testing input shapes argument."""
keras_file = self._getSequentialModel()
# Passing in shape of invalid input array has no impact as long as all input
# arrays have a shape.
converter = lite.TFLiteConverter.from_keras_model_file(
keras_file, input_shapes={'invalid-input': [2, 3]})
tflite_model = converter.convert()
self.assertTrue(tflite_model)
# Passing in shape of valid input array.
converter = lite.TFLiteConverter.from_keras_model_file(
keras_file, input_shapes={'dense_input': [2, 3]})
tflite_model = converter.convert()
os.remove(keras_file)
self.assertTrue(tflite_model)
# Check input shape from converted model.
interpreter = Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(1, len(input_details))
self.assertEqual('dense_input', input_details[0]['name'])
self.assertTrue(([2, 3] == input_details[0]['shape']).all())
示例13: testSimpleModel
def testSimpleModel(self):
"""Test a SavedModel."""
saved_model_dir = self._createSavedModel(shape=[1, 16, 16, 3])
# Convert model and ensure model is not None.
converter = lite.TFLiteConverter.from_saved_model(saved_model_dir)
tflite_model = converter.convert()
self.assertTrue(tflite_model)
interpreter = Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(2, len(input_details))
self.assertEqual('inputA', input_details[0]['name'])
self.assertEqual(np.float32, input_details[0]['dtype'])
self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all())
self.assertEqual((0., 0.), input_details[0]['quantization'])
self.assertEqual('inputB', input_details[1]['name'])
self.assertEqual(np.float32, input_details[1]['dtype'])
self.assertTrue(([1, 16, 16, 3] == input_details[1]['shape']).all())
self.assertEqual((0., 0.), input_details[1]['quantization'])
output_details = interpreter.get_output_details()
self.assertEqual(1, len(output_details))
self.assertEqual('add', output_details[0]['name'])
self.assertEqual(np.float32, output_details[0]['dtype'])
self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all())
self.assertEqual((0., 0.), output_details[0]['quantization'])
示例14: testPbtxt
def testPbtxt(self):
in_tensor = array_ops.placeholder(
shape=[1, 16, 16, 3], dtype=dtypes.float32)
_ = in_tensor + in_tensor
sess = session.Session()
# Write graph to file.
graph_def_file = os.path.join(self.get_temp_dir(), 'model.pbtxt')
write_graph(sess.graph_def, '', graph_def_file, True)
sess.close()
# Convert model and ensure model is not None.
converter = lite.TFLiteConverter.from_frozen_graph(graph_def_file,
['Placeholder'], ['add'])
tflite_model = converter.convert()
self.assertTrue(tflite_model)
# Check values from converted model.
interpreter = Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
self.assertEqual(1, len(input_details))
self.assertEqual('Placeholder', input_details[0]['name'])
self.assertEqual(np.float32, input_details[0]['dtype'])
self.assertTrue(([1, 16, 16, 3] == input_details[0]['shape']).all())
self.assertEqual((0., 0.), input_details[0]['quantization'])
output_details = interpreter.get_output_details()
self.assertEqual(1, len(output_details))
self.assertEqual('add', output_details[0]['name'])
self.assertEqual(np.float32, output_details[0]['dtype'])
self.assertTrue(([1, 16, 16, 3] == output_details[0]['shape']).all())
self.assertEqual((0., 0.), output_details[0]['quantization'])
示例15: testSequentialModelTocoConverter
def testSequentialModelTocoConverter(self):
"""Test a Sequential tf.keras model with deprecated TocoConverter."""
keras_file = self._getSequentialModel()
converter = lite.TocoConverter.from_keras_model_file(keras_file)
tflite_model = converter.convert()
self.assertTrue(tflite_model)
# Ensure the model is able to load.
interpreter = Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()