本文整理匯總了Python中tempodb.Client.read_key方法的典型用法代碼示例。如果您正苦於以下問題:Python Client.read_key方法的具體用法?Python Client.read_key怎麽用?Python Client.read_key使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tempodb.Client
的用法示例。
在下文中一共展示了Client.read_key方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: read_samples
# 需要導入模塊: from tempodb import Client [as 別名]
# 或者: from tempodb.Client import read_key [as 別名]
def read_samples():
client = Client(API_KEY, API_SECRET)
start_time = datetime.datetime(2013,07,26)
end_time = start_time + datetime.timedelta(minutes=3600)
dataset = client.read_key('type:trig.function:sin.1', start_time, end_time, interval="1min")
print "Average of sin", round(dataset.summary.mean)
print "Max of sin", dataset.summary.max
attributes={
"function": "sin"
}
datasets = client.read(start_time, end_time, attributes=attributes)
for dset in datasets:
print "Average of %s" % dset.series.attributes['function'], round(dset.summary.mean)
attrs={'type':'trig'}
datasets = client.read(start_time, end_time, attributes=attrs)
for dset in datasets:
print "Average of %s" % dset.series.attributes['function'], round(dset.summary.mean)
示例2: Client
# 需要導入模塊: from tempodb import Client [as 別名]
# 或者: from tempodb.Client import read_key [as 別名]
import json
import math
from tempodb import Client
from pygal.style import BlueStyle
API_KEY = 'API_KEY'
API_SECRET = 'API_SECRET'
MILES_SERIES_KEY = 'divvy.trip.miles'
TEMPERATURE_SERIES_KEY = 'divvy.trip.temperature'
client = Client(API_KEY, API_SECRET)
start = datetime.date(2013, 6, 27)
end = start + datetime.timedelta(days=187)
miles_data = client.read_key(MILES_SERIES_KEY, start, end, interval="1day", function="sum")
miles_data_list = []
miles_data_count=0
for datapoint in miles_data.data:
miles_data_list.append(datapoint.value)
miles_data_count = miles_data_count + 1
# now do the same thing for the high temperature
temperature_data = client.read_key(TEMPERATURE_SERIES_KEY, start, end)
temperature_data_list = []
temperature_data_count=0
for datapoint in temperature_data.data:
示例3: Client
# 需要導入模塊: from tempodb import Client [as 別名]
# 或者: from tempodb.Client import read_key [as 別名]
"""
http://tempo-db.com/api/read-series/#read-series-by-key
"""
import datetime
from tempodb import Client
# Modify these with your settings found at: http://tempo-db.com/manage/
API_KEY = 'baff599bbda949d48a223633b75569e0'
API_SECRET = '79b79d2883874542a217afc9045b05e0'
SERIES_KEY = 'test1'
client = Client(API_KEY, API_SECRET)
start = datetime.date(2012, 1, 1)
end = start + datetime.timedelta(days=1)
data = client.read_key(SERIES_KEY, start, end)
for datapoint in data.data:
print datapoint
示例4: TempoDBArchive
# 需要導入模塊: from tempodb import Client [as 別名]
# 或者: from tempodb.Client import read_key [as 別名]
class TempoDBArchive(object):
def __init__(self, api_key, api_secret, interval=INTERVAL,
keep_days=KEEP_DAYS):
self.keep_days = datetime.timedelta(days=keep_days)
self.interval = datetime.timedelta(hours=interval)
self.client = Client(api_key, api_secret)
def get_series_keys(self):
try:
return self._series_keys
except AttributeError:
self._series_keys = [p.key for p in self.client.get_series()]
return self._series_keys
def get_datapoints(self, series_key, delete=False):
ts = datetime.datetime.utcnow()
end = datetime.datetime(ts.year, ts.month, ts.day) - self.keep_days
while True:
start = end - self.interval
data = self.client.read_key(series_key, start, end, tz='UTC')
yield data.data
if not data.data:
break
if delete:
self.client.delete_key(series_key, start, end)
end = start
def write_sqlite(self, series_key, data, filename=DEFAULT_DATABASE_NAME):
conn = sqlite3.connect(filename)
cur = conn.cursor()
# I know this might possibly run untrusted code but I'm not aware of
# a built-in method for escaping identifiers and this is just an
# archive tool.
query = '''CREATE TABLE IF NOT EXISTS "{0}" (
timestamp text UNIQUE NOT NULL,
value real NOT NULL)'''.format(series_key)
cur.execute(query)
query = 'INSERT INTO "{0}" values (?, ?)'.format(series_key)
with conn:
[cur.execute(query, (str(reading.ts), reading.value))
for reading in data]
conn.close()
def archive(self, series=None, delete=False):
if series in (None, []):
series_keys = self.get_series_keys()
elif isinstance(series, str):
series_keys = (series,)
else:
series_keys = series
for key in series_keys:
if key not in self.get_series_keys():
print('Series {0} does not exist'.format(key))
continue
self.archive_series(key, delete)
def archive_series(self, series_key, delete=False):
start = datetime.datetime.utcnow() - self.keep_days
start_date = datetime.datetime(start.year, start.month, start.day)
for day, data in enumerate(self.get_datapoints(series_key, delete), 1):
delta = self.interval * day
archive_date = (start_date - delta).strftime("%Y-%m-%d")
print('Archiving {0} for day {1}'.format(series_key, archive_date))
try:
self.write_sqlite(series_key, data)
except sqlite3.IntegrityError:
print('Skipping', archive_date)
示例5: ClientTest
# 需要導入模塊: from tempodb import Client [as 別名]
# 或者: from tempodb.Client import read_key [as 別名]
#.........這裏部分代碼省略.........
auth=('key', 'secret'),
data=simplejson.dumps(update.to_json()),
headers=self.put_headers
)
self.assertEqual(update, updated)
def test_read_id(self):
self.client.session.get.return_value = MockResponse(200, """{
"series": {
"id": "id",
"key": "key",
"name": "",
"tags": [],
"attributes": {}
},
"start": "2012-03-27T00:00:00.000",
"end": "2012-03-28T00:00:00.000",
"data": [{"t": "2012-03-27T00:00:00.000", "v": 12.34}],
"summary": {}
}""")
start = datetime.datetime(2012, 3, 27)
end = datetime.datetime(2012, 3, 28)
dataset = self.client.read_id('id', start, end)
expected = DataSet(Series('id', 'key'), start, end, [DataPoint(start, 12.34)], Summary())
self.client.session.get.assert_called_once_with(
'https://example.com/v1/series/id/id/data/?start=2012-03-27T00%3A00%3A00&end=2012-03-28T00%3A00%3A00',
auth=('key', 'secret'),
headers=self.get_headers
)
self.assertEqual(dataset, expected)
def test_read_key(self):
self.client.session.get.return_value = MockResponse(200, """{
"series": {
"id": "id",
"key": "key1",
"name": "",
"tags": [],
"attributes": {}
},
"start": "2012-03-27T00:00:00.000",
"end": "2012-03-28T00:00:00.000",
"data": [{"t": "2012-03-27T00:00:00.000", "v": 12.34}],
"summary": {}
}""")
start = datetime.datetime(2012, 3, 27)
end = datetime.datetime(2012, 3, 28)
dataset = self.client.read_key('key1', start, end)
expected = DataSet(Series('id', 'key1'), start, end, [DataPoint(start, 12.34)], Summary())
self.client.session.get.assert_called_once_with(
'https://example.com/v1/series/key/key1/data/?start=2012-03-27T00%3A00%3A00&end=2012-03-28T00%3A00%3A00',
auth=('key', 'secret'),
headers=self.get_headers
)
self.assertEqual(dataset, expected)
def test_read_key_escape(self):
self.client.session.get.return_value = MockResponse(200, """{
"series": {
"id": "id",
"key": "ke:y/1",
"name": "",
示例6: Client
# 需要導入模塊: from tempodb import Client [as 別名]
# 或者: from tempodb.Client import read_key [as 別名]
import pygal
import datetime
import json
from tempodb import Client
from pygal.style import BlueStyle
API_KEY = 'API_KEY'
API_SECRET = 'API_SECRET'
MILES_SERIES_KEY = 'divvy.trip.miles'
client = Client(API_KEY, API_SECRET)
start = datetime.date(2013, 6, 27)
end = start + datetime.timedelta(days=187)
data = client.read_key(MILES_SERIES_KEY, start, end, interval="1day", function="sum")
data_list = []
x_label_list = []
x_label_major_list = []
data_count=0
for datapoint in data.data:
if data_count%15==0:
x_label_major_list.append(datapoint.ts.strftime("%b %e, %Y"))
x_label_list.append(datapoint.ts.strftime("%b %e, %Y"))
data_list.append(datapoint.value)
data_count = data_count + 1
chart = pygal.Bar(x_label_rotation=40,interpolate='cubic',show_minor_x_labels=False,disable_xml_declaration=True,explicit_size=True,style=BlueStyle)
示例7: Client
# 需要導入模塊: from tempodb import Client [as 別名]
# 或者: from tempodb.Client import read_key [as 別名]
import math, datetime
from tempodb import Client, DataPoint
client = Client("a755539a9e124278b04f988d39bc5ef9", "43f97dc4dbbc46499bd6694a3455210c")
sin = [math.sin(math.radians(d)) for d in range(0,3600)]
cos = [math.cos(math.radians(d)) for d in range(0,3600)]
start = datetime.datetime(2013,01,01)
sin_data = []
cos_data = []
for i in range(len(sin)):
sin_data.append(DataPoint(start + datetime.timedelta(minutes=i), sin[i]))
cos_data.append(DataPoint(start + datetime.timedelta(minutes=i), cos[i]))
client.write_key('type:sin.1',sin_data)
client.write_key('type:cos.1', cos_data)
client.read_key('type:sin.1', start, datetime.datetime(2013,01,05))
attributes={
"type": "sin"
}
client.read(start, datetime.datetime(2013,01,05), attributes= attributes)
示例8: Client
# 需要導入模塊: from tempodb import Client [as 別名]
# 或者: from tempodb.Client import read_key [as 別名]
import json
import itertools
from tempodb import Client
from pygal.style import BlueStyle
API_KEY = 'API_KEY'
API_SECRET = 'API_SECRET'
MILES_SERIES_KEY = 'divvy.trip.miles'
PRECIP_SERIES_KEY = 'divvy.trip.precip'
client = Client(API_KEY, API_SECRET)
start = datetime.date(2013, 6, 27)
end = start + datetime.timedelta(days=187)
miles_data = client.read_key(MILES_SERIES_KEY, start, end, interval="1day", function="sum")
miles_data_list = []
miles_data_count=0
for datapoint in miles_data.data:
miles_data_list.append(datapoint.value)
miles_data_count = miles_data_count + 1
# now do the same thing for precip
precip_data = client.read_key(PRECIP_SERIES_KEY, start, end)
precip_data_list = []
precip_data_count=0
for datapoint in precip_data.data:
示例9: Client
# 需要導入模塊: from tempodb import Client [as 別名]
# 或者: from tempodb.Client import read_key [as 別名]
"""
http://tempo-db.com/api/read-series/#read-series-by-key
"""
import datetime
from tempodb import Client
client = Client('your-api-key', 'your-api-secret')
start = datetime.date(2012, 1, 1)
end = start + datetime.timedelta(days=1)
data = client.read_key('your-custom-key', start, end)
for datapoint in data.data:
print datapoint