本文整理匯總了Python中taskbuffer.FileSpec.FileSpec.dataset方法的典型用法代碼示例。如果您正苦於以下問題:Python FileSpec.dataset方法的具體用法?Python FileSpec.dataset怎麽用?Python FileSpec.dataset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類taskbuffer.FileSpec.FileSpec
的用法示例。
在下文中一共展示了FileSpec.dataset方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: convertToJobFileSpec
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
def convertToJobFileSpec(self,datasetSpec,setType=None,useEventService=False):
jobFileSpec = JobFileSpec()
jobFileSpec.fileID = self.fileID
jobFileSpec.datasetID = datasetSpec.datasetID
jobFileSpec.jediTaskID = datasetSpec.jediTaskID
jobFileSpec.lfn = self.lfn
jobFileSpec.GUID = self.GUID
if setType == None:
jobFileSpec.type = self.type
else:
jobFileSpec.type = setType
jobFileSpec.scope = self.scope
jobFileSpec.fsize = self.fsize
jobFileSpec.checksum = self.checksum
jobFileSpec.attemptNr = self.attemptNr
# dataset attribute
if datasetSpec != None:
# dataset
if not datasetSpec.containerName in [None,'']:
jobFileSpec.dataset = datasetSpec.containerName
else:
jobFileSpec.dataset = datasetSpec.datasetName
if self.type in datasetSpec.getInputTypes() or setType in datasetSpec.getInputTypes():
# prodDBlock
jobFileSpec.prodDBlock = datasetSpec.datasetName
# storage token
if not datasetSpec.storageToken in ['',None]:
jobFileSpec.dispatchDBlockToken = datasetSpec.storageToken
else:
# destinationDBlock
jobFileSpec.destinationDBlock = datasetSpec.datasetName
# storage token
if not datasetSpec.storageToken in ['',None]:
jobFileSpec.destinationDBlockToken = datasetSpec.storageToken.split('/')[0]
# destination
if not datasetSpec.destination in ['',None]:
jobFileSpec.destinationSE = datasetSpec.destination
# set prodDBlockToken for Event Service
if useEventService and datasetSpec.getObjectStore() != None:
jobFileSpec.prodDBlockToken = 'objectstore^{0}'.format(datasetSpec.getObjectStore())
# allow no output
if datasetSpec.isAllowedNoOutput():
jobFileSpec.allowNoOutput()
# return
return jobFileSpec
示例2: defineEvgen16Job
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
def defineEvgen16Job(self, i):
"""Define an Evgen16 job based on predefined values and randomly generated names
"""
job = JobSpec()
job.computingSite = self.__site
job.cloud = self.__cloud
job.jobDefinitionID = int(time.time()) % 10000
job.jobName = "%s_%d" % (uuid.uuid1(), i)
job.AtlasRelease = 'Atlas-16.6.2'
job.homepackage = 'AtlasProduction/16.6.2.1'
job.transformation = 'Evgen_trf.py'
job.destinationDBlock = self.__datasetName
job.destinationSE = self.__destName
job.currentPriority = 10000
job.prodSourceLabel = 'test'
job.cmtConfig = 'i686-slc5-gcc43-opt'
#Output file
fileO = FileSpec()
fileO.lfn = "%s.evgen.pool.root" % job.jobName
fileO.destinationDBlock = job.destinationDBlock
fileO.destinationSE = job.destinationSE
fileO.dataset = job.destinationDBlock
fileO.destinationDBlockToken = 'ATLASDATADISK'
fileO.type = 'output'
job.addFile(fileO)
#Log file
fileL = FileSpec()
fileL.lfn = "%s.job.log.tgz" % job.jobName
fileL.destinationDBlock = job.destinationDBlock
fileL.destinationSE = job.destinationSE
fileL.dataset = job.destinationDBlock
fileL.destinationDBlockToken = 'ATLASDATADISK'
fileL.type = 'log'
job.addFile(fileL)
job.jobParameters = "2760 105048 19901 101 200 MC10.105048.PythiaB_ccmu3mu1X.py %s NONE NONE NONE MC10JobOpts-latest-test.tar.gz" % fileO.lfn
return job
示例3: outFileSpec
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
def outFileSpec(of=None, log=False):
"""Local routine to create an FileSpec for the an job output/log file
:arg str of: output file base name
:return: FileSpec object for the output file."""
outfile = FileSpec()
if log:
outfile.lfn = "job.log_%d_%s.tgz" % (jobid, lfnhanger)
outfile.type = 'log'
else:
outfile.lfn = '%s_%d_%s%s' %(os.path.splitext(of)[0], jobid, lfnhanger, os.path.splitext(of)[1])
outfile.type = 'output'
outfile.destinationDBlock = pandajob.destinationDBlock
outfile.destinationSE = task['tm_asyncdest']
outfile.dataset = pandajob.destinationDBlock
return outfile
示例4: master_prepare
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
#.........這裏部分代碼省略.........
## if cloudSite not in inclouds:
## inclouds.append(cloudSite)
## # now converting inclouds content into proper brokering stuff.
## outclouds=[]
## for cloudSite in inclouds:
## for cloudID, eachCloud in ToACache.dbcloud.iteritems():
## if cloudSite==eachCloud:
## cloud=cloudID
## outclouds.append(cloud)
## break
## print outclouds
## # finally, matching with user's wishes
## if len(outclouds)>0:
## if not job.backend.requirements.cloud: # no user wish, update
## job.backend.requirements.cloud=outclouds[0]
## else:
## try:
## assert job.backend.requirements.cloud in outclouds
## except:
## raise ApplicationConfigurationError(None,'Input dataset not available in target cloud %s. Please try any of the following %s' % (job.backend.requirements.cloud, str(outclouds)))
from GangaPanda.Lib.Panda.Panda import runPandaBrokerage
runPandaBrokerage(job)
if job.backend.site == 'AUTO':
raise ApplicationConfigurationError(None,'site is still AUTO after brokerage!')
# output dataset preparation and registration
try:
outDsLocation = Client.PandaSites[job.backend.site]['ddm']
except:
raise ApplicationConfigurationError(None,"Could not extract output dataset location from job.backend.site value: %s. Aborting" % job.backend.site)
if not app.dryrun:
for outtype in app.outputpaths.keys():
dset=string.replace(app.outputpaths[outtype],"/",".")
dset=dset[1:]
# dataset registration must be done only once.
print "registering output dataset %s at %s" % (dset,outDsLocation)
try:
Client.addDataset(dset,False,location=outDsLocation)
dq2_set_dataset_lifetime(dset, location=outDsLocation)
except:
raise ApplicationConfigurationError(None,"Fail to create output dataset %s. Aborting" % dset)
# extend registration to build job lib dataset:
print "registering output dataset %s at %s" % (self.libDataset,outDsLocation)
try:
Client.addDataset(self.libDataset,False,location=outDsLocation)
dq2_set_dataset_lifetime(self.libDataset, outDsLocation)
except:
raise ApplicationConfigurationError(None,"Fail to create output dataset %s. Aborting" % self.libDataset)
###
cacheVer = "-AtlasProduction_" + str(app.prod_release)
logger.debug("master job submit?")
self.outsite=job.backend.site
if app.se_name and app.se_name != "none" and not self.outsite:
self.outsite=app.se_name
# create build job
jspec = JobSpec()
示例5: prepare
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
def prepare(self,app,appconfig,appmasterconfig,jobmasterconfig):
'''prepare the subjob specific configuration'''
# PandaTools
from pandatools import Client
from pandatools import AthenaUtils
from taskbuffer.JobSpec import JobSpec
from taskbuffer.FileSpec import FileSpec
job = app._getParent()
logger.debug('AthenaMCPandaRTHandler prepare called for %s', job.getFQID('.'))
try:
assert self.outsite
except:
logger.error("outsite not set. Aborting")
raise Exception()
job.backend.site = self.outsite
job.backend.actualCE = self.outsite
cloud = job._getRoot().backend.requirements.cloud
job.backend.requirements.cloud = cloud
# now just filling the job from AthenaMC data
jspec = JobSpec()
jspec.jobDefinitionID = job._getRoot().id
jspec.jobName = commands.getoutput('uuidgen 2> /dev/null')
jspec.AtlasRelease = 'Atlas-%s' % app.atlas_rel
if app.transform_archive:
jspec.homepackage = 'AnalysisTransforms'+app.transform_archive
elif app.prod_release:
jspec.homepackage = 'AnalysisTransforms-AtlasProduction_'+str(app.prod_release)
jspec.transformation = '%s/runAthena-00-00-11' % Client.baseURLSUB
#---->???? prodDBlock and destinationDBlock when facing several input / output datasets?
jspec.prodDBlock = 'NULL'
if job.inputdata and len(app.inputfiles)>0 and app.inputfiles[0] in app.dsetmap:
jspec.prodDBlock = app.dsetmap[app.inputfiles[0]]
# How to specify jspec.destinationDBlock when more than one type of output is available? Panda prod jobs seem to specify only the last output dataset
outdset=""
for type in ["EVNT","RDO","HITS","AOD","ESD","NTUP"]:
if type in app.outputpaths.keys():
outdset=string.replace(app.outputpaths[type],"/",".")
outdset=outdset[1:-1]
break
if not outdset:
try:
assert len(app.outputpaths.keys())>0
except:
logger.error("app.outputpaths is empty: check your output datasets")
raise
type=app.outputpaths.keys()[0]
outdset=string.replace(app.outputpaths[type],"/",".")
outdset=outdset[1:-1]
jspec.destinationDBlock = outdset
jspec.destinationSE = self.outsite
jspec.prodSourceLabel = 'user'
jspec.assignedPriority = 1000
jspec.cloud = cloud
# memory
if job.backend.requirements.memory != -1:
jspec.minRamCount = job.backend.requirements.memory
jspec.computingSite = self.outsite
jspec.cmtConfig = AthenaUtils.getCmtConfig(athenaVer=app.atlas_rel)
# library (source files)
flib = FileSpec()
flib.lfn = self.library
# flib.GUID =
flib.type = 'input'
# flib.status =
flib.dataset = self.libDataset
flib.dispatchDBlock = self.libDataset
jspec.addFile(flib)
# input files FIXME: many more input types
for lfn in app.inputfiles:
useguid=app.turls[lfn].replace("guid:","")
finp = FileSpec()
finp.lfn = lfn
finp.GUID = useguid
finp.dataset = app.dsetmap[lfn]
finp.prodDBlock = app.dsetmap[lfn]
finp.prodDBlockToken = 'local'
finp.dispatchDBlock = app.dsetmap[lfn]
finp.type = 'input'
finp.status = 'ready'
jspec.addFile(finp)
# add dbfiles if any:
for lfn in app.dbfiles:
useguid=app.dbturls[lfn].replace("guid:","")
finp = FileSpec()
finp.lfn = lfn
finp.GUID = useguid
finp.dataset = app.dsetmap[lfn]
#.........這裏部分代碼省略.........
示例6: int
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
job.jobDefinitionID = int(time.time()) % 10000
job.jobName = commands.getoutput('uuidgen')
job.AtlasRelease = 'Atlas-11.0.41'
#job.AtlasRelease = 'Atlas-11.0.3'
job.homepackage = 'AnalysisTransforms'
job.transformation = 'https://gridui01.usatlas.bnl.gov:24443/dav/test/runAthena'
job.destinationDBlock = datasetName
job.destinationSE = destName
job.currentPriority = 100
job.prodSourceLabel = 'user'
job.computingSite = site
#job.prodDBlock = "pandatest.b1599dfa-cd36-4fc5-92f6-495781a94c66"
job.prodDBlock = "pandatest.f228b051-077b-4f81-90bf-496340644379"
fileI = FileSpec()
fileI.dataset = job.prodDBlock
fileI.prodDBlock = job.prodDBlock
fileI.lfn = "lib.f228b051-077b-4f81-90bf-496340644379.tgz"
fileI.type = 'input'
job.addFile(fileI)
fileOL = FileSpec()
fileOL.lfn = "%s.job.log.tgz" % commands.getoutput('uuidgen')
fileOL.destinationDBlock = job.destinationDBlock
fileOL.destinationSE = job.destinationSE
fileOL.dataset = job.destinationDBlock
fileOL.type = 'log'
job.addFile(fileOL)
fileOZ = FileSpec()
fileOZ.lfn = "%s.pool.root" % commands.getoutput('uuidgen')
示例7: send_job
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
def send_job(jobid, siteid):
_logger.debug('Jobid: ' + str(jobid))
site = sites_.get(siteid)
job = jobs_.get(int(jobid))
cont = job.container
files_catalog = cont.files
fscope = getScope(job.owner.username)
datasetName = '{}:{}'.format(fscope, cont.guid)
distributive = job.distr.name
release = job.distr.release
# Prepare runScript
parameters = job.distr.command
parameters = parameters.replace("$COMMAND$", job.params)
parameters = parameters.replace("$USERNAME$", job.owner.username)
parameters = parameters.replace("$WORKINGGROUP$", job.owner.working_group)
# Prepare metadata
metadata = dict(user=job.owner.username)
# Prepare PanDA Object
pandajob = JobSpec()
pandajob.jobDefinitionID = int(time.time()) % 10000
pandajob.jobName = cont.guid
pandajob.transformation = client_config.DEFAULT_TRF
pandajob.destinationDBlock = datasetName
pandajob.destinationSE = site.se
pandajob.currentPriority = 1000
pandajob.prodSourceLabel = 'user'
pandajob.computingSite = site.ce
pandajob.cloud = 'RU'
pandajob.VO = 'atlas'
pandajob.prodDBlock = "%s:%s" % (fscope, pandajob.jobName)
pandajob.coreCount = job.corecount
pandajob.metadata = json.dumps(metadata)
#pandajob.workingGroup = job.owner.working_group
if site.encode_commands:
# It requires script wrapper on cluster side
pandajob.jobParameters = '%s %s %s "%s"' % (cont.guid, release, distributive, parameters)
else:
pandajob.jobParameters = parameters
has_input = False
for fcc in files_catalog:
if fcc.type == 'input':
f = fcc.file
guid = f.guid
fileIT = FileSpec()
fileIT.lfn = f.lfn
fileIT.dataset = pandajob.prodDBlock
fileIT.prodDBlock = pandajob.prodDBlock
fileIT.type = 'input'
fileIT.scope = fscope
fileIT.status = 'ready'
fileIT.GUID = guid
pandajob.addFile(fileIT)
has_input = True
if fcc.type == 'output':
f = fcc.file
fileOT = FileSpec()
fileOT.lfn = f.lfn
fileOT.destinationDBlock = pandajob.prodDBlock
fileOT.destinationSE = pandajob.destinationSE
fileOT.dataset = pandajob.prodDBlock
fileOT.type = 'output'
fileOT.scope = fscope
fileOT.GUID = f.guid
pandajob.addFile(fileOT)
# Save replica meta
fc.new_replica(f, site)
if not has_input:
# Add fake input
fileIT = FileSpec()
fileIT.lfn = "fake.input"
fileIT.dataset = pandajob.prodDBlock
fileIT.prodDBlock = pandajob.prodDBlock
fileIT.type = 'input'
fileIT.scope = fscope
fileIT.status = 'ready'
fileIT.GUID = "fake.guid"
pandajob.addFile(fileIT)
# Prepare lof file
fileOL = FileSpec()
fileOL.lfn = "%s.log.tgz" % pandajob.jobName
fileOL.destinationDBlock = pandajob.destinationDBlock
fileOL.destinationSE = pandajob.destinationSE
fileOL.dataset = '{}:logs'.format(fscope)
fileOL.type = 'log'
fileOL.scope = 'panda'
pandajob.addFile(fileOL)
#.........這裏部分代碼省略.........
示例8: master_prepare
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
def master_prepare(self,app,appconfig):
'''Prepare the master job'''
from pandatools import Client
from taskbuffer.JobSpec import JobSpec
from taskbuffer.FileSpec import FileSpec
job = app._getParent()
logger.debug('ExecutablePandaRTHandler master_prepare called for %s', job.getFQID('.'))
# set chirp variables
if configPanda['chirpconfig'] or configPanda['chirpserver']:
setChirpVariables()
# Pack inputsandbox
inputsandbox = 'sources.%s.tar' % commands.getoutput('uuidgen 2> /dev/null')
inpw = job.getInputWorkspace()
# add user script to inputsandbox
if hasattr(job.application.exe, "name"):
if not job.application.exe in job.inputsandbox:
job.inputsandbox.append(job.application.exe)
for fname in [f.name for f in job.inputsandbox]:
fname.rstrip(os.sep)
path = fname[:fname.rfind(os.sep)]
f = fname[fname.rfind(os.sep)+1:]
rc, output = commands.getstatusoutput('tar rf %s -C %s %s' % (inpw.getPath(inputsandbox), path, f))
if rc:
logger.error('Packing inputsandbox failed with status %d',rc)
logger.error(output)
raise ApplicationConfigurationError('Packing inputsandbox failed.')
if len(job.inputsandbox) > 0:
rc, output = commands.getstatusoutput('gzip %s' % (inpw.getPath(inputsandbox)))
if rc:
logger.error('Packing inputsandbox failed with status %d',rc)
logger.error(output)
raise ApplicationConfigurationError('Packing inputsandbox failed.')
inputsandbox += ".gz"
else:
inputsandbox = None
# Upload Inputsandbox
if inputsandbox:
logger.debug('Uploading source tarball ...')
uploadSources(inpw.getPath(),os.path.basename(inputsandbox))
self.inputsandbox = inputsandbox
else:
self.inputsandbox = None
# input dataset
if job.inputdata:
if job.inputdata._name != 'DQ2Dataset':
raise ApplicationConfigurationError('PANDA application supports only DQ2Datasets')
# run brokerage here if not splitting
if not job.splitter:
from GangaPanda.Lib.Panda.Panda import runPandaBrokerage
runPandaBrokerage(job)
elif job.splitter._name not in ['DQ2JobSplitter', 'ArgSplitter', 'ArgSplitterTask']:
raise ApplicationConfigurationError('Panda splitter must be DQ2JobSplitter or ArgSplitter')
if job.backend.site == 'AUTO':
raise ApplicationConfigurationError('site is still AUTO after brokerage!')
# output dataset
if job.outputdata:
if job.outputdata._name != 'DQ2OutputDataset':
raise ApplicationConfigurationError('Panda backend supports only DQ2OutputDataset')
else:
logger.info('Adding missing DQ2OutputDataset')
job.outputdata = DQ2OutputDataset()
job.outputdata.datasetname,outlfn = dq2outputdatasetname(job.outputdata.datasetname, job.id, job.outputdata.isGroupDS, job.outputdata.groupname)
self.outDsLocation = Client.PandaSites[job.backend.site]['ddm']
try:
Client.addDataset(job.outputdata.datasetname,False,location=self.outDsLocation)
logger.info('Output dataset %s registered at %s'%(job.outputdata.datasetname,self.outDsLocation))
dq2_set_dataset_lifetime(job.outputdata.datasetname, location=self.outDsLocation)
except exceptions.SystemExit:
raise BackendError('Panda','Exception in Client.addDataset %s: %s %s'%(job.outputdata.datasetname,sys.exc_info()[0],sys.exc_info()[1]))
# handle the libds
if job.backend.libds:
self.libDataset = job.backend.libds
self.fileBO = getLibFileSpecFromLibDS(self.libDataset)
self.library = self.fileBO.lfn
elif job.backend.bexec:
self.libDataset = job.outputdata.datasetname+'.lib'
self.library = '%s.tgz' % self.libDataset
try:
Client.addDataset(self.libDataset,False,location=self.outDsLocation)
dq2_set_dataset_lifetime(self.libDataset, location=self.outDsLocation)
logger.info('Lib dataset %s registered at %s'%(self.libDataset,self.outDsLocation))
except exceptions.SystemExit:
raise BackendError('Panda','Exception in Client.addDataset %s: %s %s'%(self.libDataset,sys.exc_info()[0],sys.exc_info()[1]))
# collect extOutFiles
self.extOutFile = []
#.........這裏部分代碼省略.........
示例9: FileSpec
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
job.homepackage = 'AtlasProduction/12.0.7.1'
# Need different args too
# job.AtlasRelease = 'Atlas-13.0.30'
# job.homepackage = 'AtlasProduction/13.0.30.2'
job.transformation = 'csc_simul_trf.py'
job.destinationDBlock = datasetName
job.cloud = cloud
job.computingSite = site
# job.prodDBlock = 'mc12.005001.pythia_minbias.evgen.EVNT.v12000701_tid012303'
job.prodDBlock = files[lfn]
job.prodSourceLabel = 'test'
# job.prodSourceLabel = 'cloudtest'
job.currentPriority = 1001
fileI = FileSpec()
fileI.dataset = job.prodDBlock
fileI.prodDBlock = job.prodDBlock
fileI.lfn = lfn
fileI.type = 'input'
job.addFile(fileI)
fileD = FileSpec()
fileD.dataset = 'ddo.000001.Atlas.Ideal.DBRelease.v030101'
fileD.prodDBlock = 'ddo.000001.Atlas.Ideal.DBRelease.v030101'
fileD.lfn = 'DBRelease-3.1.1.tar.gz'
fileD.type = 'input'
job.addFile(fileD)
fileOE = FileSpec()
fileOE.lfn = "%s.HITS.pool.root" % job.jobName
示例10: FileSpec
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
job.jobName = "%s_%d" % (commands.getoutput('uuidgen'),i)
job.AtlasRelease = 'Atlas-12.0.6'
job.homepackage = 'AnalysisTransforms'
job.transformation = 'https://gridui01.usatlas.bnl.gov:24443/dav/test/runAthenaXrd'
job.destinationDBlock = datasetName
job.destinationSE = destName
job.currentPriority = 3000
job.assignedPriority = 3000
job.prodSourceLabel = 'user'
job.computingSite = site
file = FileSpec()
file.lfn = "%s.AANT._%05d.root" % (job.jobName,i)
file.destinationDBlock = job.destinationDBlock
file.destinationSE = job.destinationSE
file.dataset = job.destinationDBlock
file.type = 'output'
job.addFile(file)
fileOL = FileSpec()
fileOL.lfn = "%s.job.log.tgz" % job.jobName
fileOL.destinationDBlock = job.destinationDBlock
fileOL.destinationSE = job.destinationSE
fileOL.dataset = job.destinationDBlock
fileOL.type = 'log'
job.addFile(fileOL)
fileL = FileSpec()
fileL.dataset = 'user.TadashiMaeno.acas0003.lib._000134'
fileL.prodDBlock = fileL.dataset
fileL.lfn = 'user.TadashiMaeno.acas0003.lib._000134.lib.tgz'
示例11: FileSpec
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
continue
prefix = var.split('.')[0]
sumatch = re.search('(\.[^\.]+\.[^\.]+)(\.\d+)*$',var)
suffix = sumatch.group(1)
newName = '%s.%s%s' % (job.jobName,prefix,suffix)
outMap[arg] = (var,newName)
# DBRelease
elif arg == 'DBRelease':
dbrMap = (arg,var)
# input
elif arg.startswith('input') and arg.endswith('File'):
inputMap = (arg,var)
fileI = FileSpec()
fileI.dataset = job.prodDBlock
fileI.prodDBlock = job.prodDBlock
fileI.lfn = lfn
fileI.type = 'input'
job.addFile(fileI)
fileD = FileSpec()
fileD.dataset = 'ddo.000001.Atlas.Ideal.DBRelease.v06020105'
fileD.prodDBlock = fileD.dataset
fileD.lfn = 'DBRelease-6.2.1.5.tar.gz'
fileD.type = 'input'
job.addFile(fileD)
newParams = origParams
newParams = newParams.replace(dbrMap[0]+'='+dbrMap[1],dbrMap[0]+'='+fileD.lfn)
newParams = newParams.replace(inputMap[0]+'='+inputMap[1],inputMap[0]+'='+fileI.lfn)
示例12: FileSpec
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
job.jobName = commands.getoutput('uuidgen')
job.AtlasRelease = 'Atlas-12.0.2'
job.homepackage = 'AnalysisTransforms'
job.transformation = 'https://gridui01.usatlas.bnl.gov:24443/dav/test/runAthena2'
job.destinationDBlock = datasetName
job.destinationSE = destName
job.currentPriority = 3000
job.prodSourceLabel = 'user'
job.computingSite = site
job.prodDBlock = 'testIdeal_06.005001.pythia_minbias.recon.AOD.v12000103'
fileOL = FileSpec()
fileOL.lfn = "%s.job.log.tgz" % commands.getoutput('uuidgen')
fileOL.destinationDBlock = job.destinationDBlock
fileOL.destinationSE = job.destinationSE
fileOL.dataset = job.destinationDBlock
fileOL.type = 'log'
job.addFile(fileOL)
fileOZ = FileSpec()
fileOZ.lfn = "AANT.%s.root" % commands.getoutput('uuidgen')
fileOZ.destinationDBlock = job.destinationDBlock
fileOZ.destinationSE = job.destinationSE
fileOZ.dataset = job.destinationDBlock
fileOZ.type = 'output'
job.addFile(fileOZ)
files = [
'testIdeal_06.005001.pythia_minbias.recon.AOD.v12000103._00001.pool.root.1',
'testIdeal_06.005001.pythia_minbias.recon.AOD.v12000103._00002.pool.root.1',
'testIdeal_06.005001.pythia_minbias.recon.AOD.v12000103._00003.pool.root.1',
示例13: run
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
def run(self):
try:
_logger.debug('%s Start %s' % (self.pandaID,self.job.jobStatus))
flagComplete = True
ddmJobs = []
topUserDsList = []
usingMerger = False
disableNotifier = False
firstIndvDS = True
finalStatusDS = []
for destinationDBlock in self.destinationDBlocks:
dsList = []
_logger.debug('%s start %s' % (self.pandaID,destinationDBlock))
# ignore tid datasets
if re.search('_tid[\d_]+$',destinationDBlock):
_logger.debug('%s skip %s' % (self.pandaID,destinationDBlock))
continue
# ignore HC datasets
if re.search('^hc_test\.',destinationDBlock) != None or re.search('^user\.gangarbt\.',destinationDBlock) != None:
if re.search('_sub\d+$',destinationDBlock) == None and re.search('\.lib$',destinationDBlock) == None:
_logger.debug('%s skip HC %s' % (self.pandaID,destinationDBlock))
continue
# query dataset
if self.datasetMap.has_key(destinationDBlock):
dataset = self.datasetMap[destinationDBlock]
else:
dataset = self.taskBuffer.queryDatasetWithMap({'name':destinationDBlock})
if dataset == None:
_logger.error('%s Not found : %s' % (self.pandaID,destinationDBlock))
flagComplete = False
continue
# skip tobedeleted/tobeclosed
if dataset.status in ['cleanup','tobeclosed','completed']:
_logger.debug('%s skip %s due to %s' % (self.pandaID,destinationDBlock,dataset.status))
continue
dsList.append(dataset)
# sort
dsList.sort()
# count number of completed files
notFinish = self.taskBuffer.countFilesWithMap({'destinationDBlock':destinationDBlock,
'status':'unknown'})
if notFinish < 0:
_logger.error('%s Invalid DB return : %s' % (self.pandaID,notFinish))
flagComplete = False
continue
# check if completed
_logger.debug('%s notFinish:%s' % (self.pandaID,notFinish))
if self.job.destinationSE == 'local' and self.job.prodSourceLabel in ['user','panda']:
# close non-DQ2 destinationDBlock immediately
finalStatus = 'closed'
elif self.job.lockedby == 'jedi' and self.isTopLevelDS(destinationDBlock):
# set it closed in order not to trigger DDM cleanup. It will be closed by JEDI
finalStatus = 'closed'
elif self.job.prodSourceLabel in ['user'] and "--mergeOutput" in self.job.jobParameters \
and self.job.processingType != 'usermerge':
# merge output files
if firstIndvDS:
# set 'tobemerged' to only the first dataset to avoid triggering many Mergers for --individualOutDS
finalStatus = 'tobemerged'
firstIndvDS = False
else:
finalStatus = 'tobeclosed'
# set merging to top dataset
usingMerger = True
# disable Notifier
disableNotifier = True
elif self.job.produceUnMerge():
finalStatus = 'doing'
else:
# set status to 'tobeclosed' to trigger DQ2 closing
finalStatus = 'tobeclosed'
if notFinish==0:
_logger.debug('%s set %s to dataset : %s' % (self.pandaID,finalStatus,destinationDBlock))
# set status
dataset.status = finalStatus
# update dataset in DB
retT = self.taskBuffer.updateDatasets(dsList,withLock=True,withCriteria="status<>:crStatus AND status<>:lockStatus ",
criteriaMap={':crStatus':finalStatus,':lockStatus':'locked'})
if len(retT) > 0 and retT[0]==1:
finalStatusDS += dsList
# close user datasets
if self.job.prodSourceLabel in ['user'] and self.job.destinationDBlock.endswith('/') \
and (dataset.name.startswith('user') or dataset.name.startswith('group')):
# get top-level user dataset
topUserDsName = re.sub('_sub\d+$','',dataset.name)
# update if it is the first attempt
if topUserDsName != dataset.name and not topUserDsName in topUserDsList and self.job.lockedby != 'jedi':
topUserDs = self.taskBuffer.queryDatasetWithMap({'name':topUserDsName})
if topUserDs != None:
# check status
if topUserDs.status in ['completed','cleanup','tobeclosed',
'tobemerged','merging']:
_logger.debug('%s skip %s due to status=%s' % (self.pandaID,topUserDsName,topUserDs.status))
else:
# set status
if self.job.processingType.startswith('gangarobot') or \
self.job.processingType.startswith('hammercloud'):
# not trigger freezing for HC datasets so that files can be appended
topUserDs.status = 'completed'
elif not usingMerger:
#.........這裏部分代碼省略.........
示例14: FileSpec
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
job.currentPriority = priority
# CPU, memory,disk ### FIXME
# attempt number ### FIXME
# input files
if iDataset != 'NULL':
# remove _tidXXX
pat = re.sub('_tid\d+$','',iDataset)
# search
m = re.search('('+pat+'\S+)',line)
if m != None:
file = FileSpec()
file.lfn = m.group(1)
file.type = 'input'
file.dataset = iDataset
file.prodDBlock = iDataset
job.addFile(file)
# DB release
for i,lpar in enumerate(lparams):
if lpar == 'DBRelease':
file = FileSpec()
file.lfn = "%s-%s.tgz" % (lpar,vparams[i])
file.type = 'input'
file.dataset = iDataset
file.prodDBlock = iDataset
job.addFile(file)
break
# output files
for oDataset in oDatasets:
# remove _tidXXX
示例15: prepare
# 需要導入模塊: from taskbuffer.FileSpec import FileSpec [as 別名]
# 或者: from taskbuffer.FileSpec.FileSpec import dataset [as 別名]
def prepare(self, app, appsubconfig, appmasterconfig, jobmasterconfig):
"""Prepare the specific aspec of each subjob.
Returns: subjobconfig list of objects understood by backends."""
from pandatools import Client
from pandatools import AthenaUtils
from taskbuffer.JobSpec import JobSpec
from taskbuffer.FileSpec import FileSpec
from GangaAtlas.Lib.ATLASDataset.DQ2Dataset import dq2_set_dataset_lifetime
from GangaPanda.Lib.Panda.Panda import refreshPandaSpecs
# make sure we have the correct siteType
refreshPandaSpecs()
job = app._getParent()
masterjob = job._getRoot()
logger.debug('ProdTransPandaRTHandler prepare called for %s',
job.getFQID('.'))
job.backend.actualCE = job.backend.site
job.backend.requirements.cloud = Client.PandaSites[job.backend.site]['cloud']
# check that the site is in a submit-able status
if not job.splitter or job.splitter._name != 'DQ2JobSplitter':
allowed_sites = job.backend.list_ddm_sites()
try:
outDsLocation = Client.PandaSites[job.backend.site]['ddm']
tmpDsExist = False
if (configPanda['processingType'].startswith('gangarobot') or configPanda['processingType'].startswith('hammercloud')):
#if Client.getDatasets(job.outputdata.datasetname):
if getDatasets(job.outputdata.datasetname):
tmpDsExist = True
logger.info('Re-using output dataset %s'%job.outputdata.datasetname)
if not configPanda['specialHandling']=='ddm:rucio' and not configPanda['processingType'].startswith('gangarobot') and not configPanda['processingType'].startswith('hammercloud') and not configPanda['processingType'].startswith('rucio_test'):
Client.addDataset(job.outputdata.datasetname,False,location=outDsLocation,allowProdDisk=True,dsExist=tmpDsExist)
logger.info('Output dataset %s registered at %s'%(job.outputdata.datasetname,outDsLocation))
dq2_set_dataset_lifetime(job.outputdata.datasetname, outDsLocation)
except exceptions.SystemExit:
raise BackendError('Panda','Exception in adding dataset %s: %s %s'%(job.outputdata.datasetname,sys.exc_info()[0],sys.exc_info()[1]))
# JobSpec.
jspec = JobSpec()
jspec.currentPriority = app.priority
jspec.jobDefinitionID = masterjob.id
jspec.jobName = commands.getoutput('uuidgen 2> /dev/null')
jspec.coreCount = app.core_count
jspec.AtlasRelease = 'Atlas-%s' % app.atlas_release
jspec.homepackage = app.home_package
jspec.transformation = app.transformation
jspec.destinationDBlock = job.outputdata.datasetname
if job.outputdata.location:
jspec.destinationSE = job.outputdata.location
else:
jspec.destinationSE = job.backend.site
if job.inputdata:
jspec.prodDBlock = job.inputdata.dataset[0]
else:
jspec.prodDBlock = 'NULL'
if app.prod_source_label:
jspec.prodSourceLabel = app.prod_source_label
else:
jspec.prodSourceLabel = configPanda['prodSourceLabelRun']
jspec.processingType = configPanda['processingType']
jspec.specialHandling = configPanda['specialHandling']
jspec.computingSite = job.backend.site
jspec.cloud = job.backend.requirements.cloud
jspec.cmtConfig = app.atlas_cmtconfig
if app.dbrelease == 'LATEST':
try:
latest_dbrelease = getLatestDBReleaseCaching()
except:
from pandatools import Client
latest_dbrelease = Client.getLatestDBRelease()
m = re.search('(.*):DBRelease-(.*)\.tar\.gz', latest_dbrelease)
if m:
self.dbrelease_dataset = m.group(1)
self.dbrelease = m.group(2)
else:
raise ApplicationConfigurationError(None, "Error retrieving LATEST DBRelease. Try setting application.dbrelease manually.")
else:
self.dbrelease_dataset = app.dbrelease_dataset
self.dbrelease = app.dbrelease
jspec.jobParameters = app.job_parameters
if self.dbrelease:
if self.dbrelease == 'current':
jspec.jobParameters += ' --DBRelease=current'
else:
if jspec.transformation.endswith("_tf.py") or jspec.transformation.endswith("_tf"):
jspec.jobParameters += ' --DBRelease=DBRelease-%s.tar.gz' % (self.dbrelease,)
else:
jspec.jobParameters += ' DBRelease=DBRelease-%s.tar.gz' % (self.dbrelease,)
dbspec = FileSpec()
dbspec.lfn = 'DBRelease-%s.tar.gz' % self.dbrelease
dbspec.dataset = self.dbrelease_dataset
dbspec.prodDBlock = jspec.prodDBlock
dbspec.type = 'input'
jspec.addFile(dbspec)
#.........這裏部分代碼省略.........