當前位置: 首頁>>代碼示例>>Python>>正文


Python Lap.StartTime方法代碼示例

本文整理匯總了Python中tapiriik.services.interchange.Lap.StartTime方法的典型用法代碼示例。如果您正苦於以下問題:Python Lap.StartTime方法的具體用法?Python Lap.StartTime怎麽用?Python Lap.StartTime使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tapiriik.services.interchange.Lap的用法示例。


在下文中一共展示了Lap.StartTime方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _downloadActivitySummary

# 需要導入模塊: from tapiriik.services.interchange import Lap [as 別名]
# 或者: from tapiriik.services.interchange.Lap import StartTime [as 別名]
    def _downloadActivitySummary(self, serviceRecord, activity):
        activityID = activity.ServiceData["ActivityID"]
        session = self._get_session(record=serviceRecord)
        self._rate_limit()
        res = session.get("http://connect.garmin.com/proxy/activity-service-1.3/json/activity/" + str(activityID))



        try:
            raw_data = res.json()
        except ValueError:
            raise APIException("Failure downloading activity summary %s:%s" % (res.status_code, res.text))
        stat_map = {}
        def mapStat(gcKey, statKey, type):
            stat_map[gcKey] = {
                "key": statKey,
                "attr": type
            }

        def applyStats(gc_dict, stats_obj):
            for gc_key, stat in stat_map.items():
                if gc_key in gc_dict:
                    value = float(gc_dict[gc_key]["value"])
                    units = self._unitMap[gc_dict[gc_key]["uom"]]
                    if math.isinf(value):
                        continue # GC returns the minimum speed as "-Infinity" instead of 0 some times :S
                    getattr(stats_obj, stat["key"]).update(ActivityStatistic(units, **({stat["attr"]: value})))

        mapStat("SumMovingDuration", "MovingTime", "value")
        mapStat("SumDuration", "TimerTime", "value")
        mapStat("SumDistance", "Distance", "value")
        mapStat("MinSpeed", "Speed", "min")
        mapStat("MaxSpeed", "Speed", "max")
        mapStat("WeightedMeanSpeed", "Speed", "avg")
        mapStat("MinAirTemperature", "Temperature", "min")
        mapStat("MaxAirTemperature", "Temperature", "max")
        mapStat("WeightedMeanAirTemperature", "Temperature", "avg")
        mapStat("SumEnergy", "Energy", "value")
        mapStat("MaxHeartRate", "HR", "max")
        mapStat("WeightedMeanHeartRate", "HR", "avg")
        mapStat("MaxDoubleCadence", "RunCadence", "max")
        mapStat("WeightedMeanDoubleCadence", "RunCadence", "avg")
        mapStat("MaxBikeCadence", "Cadence", "max")
        mapStat("WeightedMeanBikeCadence", "Cadence", "avg")
        mapStat("MinPower", "Power", "min")
        mapStat("MaxPower", "Power", "max")
        mapStat("WeightedMeanPower", "Power", "avg")
        mapStat("MinElevation", "Elevation", "min")
        mapStat("MaxElevation", "Elevation", "max")
        mapStat("GainElevation", "Elevation", "gain")
        mapStat("LossElevation", "Elevation", "loss")

        applyStats(raw_data["activity"]["activitySummary"], activity.Stats)

        for lap_data in raw_data["activity"]["totalLaps"]["lapSummaryList"]:
            lap = Lap()
            if "BeginTimestamp" in lap_data:
                lap.StartTime = pytz.utc.localize(datetime.utcfromtimestamp(float(lap_data["BeginTimestamp"]["value"]) / 1000))
            if "EndTimestamp" in lap_data:
                lap.EndTime = pytz.utc.localize(datetime.utcfromtimestamp(float(lap_data["EndTimestamp"]["value"]) / 1000))

            elapsed_duration = None
            if "SumElapsedDuration" in lap_data:
                elapsed_duration = timedelta(seconds=round(float(lap_data["SumElapsedDuration"]["value"])))
            elif "SumDuration" in lap_data:
                elapsed_duration = timedelta(seconds=round(float(lap_data["SumDuration"]["value"])))

            if lap.StartTime and elapsed_duration:
                # Always recalculate end time based on duration, if we have the start time
                lap.EndTime = lap.StartTime + elapsed_duration
            if not lap.StartTime and lap.EndTime and elapsed_duration:
                # Sometimes calculate start time based on duration
                lap.StartTime = lap.EndTime - elapsed_duration

            if not lap.StartTime or not lap.EndTime:
                # Garmin Connect is weird.
                raise APIExcludeActivity("Activity lap has no BeginTimestamp or EndTimestamp", userException=UserException(UserExceptionType.Corrupt))

            applyStats(lap_data, lap.Stats)
            activity.Laps.append(lap)

        # In Garmin Land, max can be smaller than min for this field :S
        if activity.Stats.Power.Max is not None and activity.Stats.Power.Min is not None and activity.Stats.Power.Min > activity.Stats.Power.Max:
            activity.Stats.Power.Min = None
開發者ID:7e7,項目名稱:tapiriik,代碼行數:86,代碼來源:garminconnect.py

示例2: _downloadActivity

# 需要導入模塊: from tapiriik.services.interchange import Lap [as 別名]
# 或者: from tapiriik.services.interchange.Lap import StartTime [as 別名]
    def _downloadActivity(self, serviceRecord, activity, returnFirstLocation=False):
        activityURI = activity.ServiceData["ActivityURI"]
        headers = self._getAuthHeaders(serviceRecord)
        activityData = requests.get(activityURI, headers=headers)
        activityData = activityData.json()

        if "clock_duration" in activityData:
            activity.EndTime = activity.StartTime + timedelta(seconds=float(activityData["clock_duration"]))

        activity.Private = "sharing" in activityData and activityData["sharing"] != "public"

        activity.GPS = False # Gets set back if there is GPS data

        if "notes" in activityData:
            activity.Notes = activityData["notes"]

        activity.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilojoules, value=float(activityData["calories"]))

        activity.Stats.Elevation = ActivityStatistic(ActivityStatisticUnit.Meters, gain=float(activityData["elevation_gain"]) if "elevation_gain" in activityData else None, loss=float(activityData["elevation_loss"]) if "elevation_loss" in activityData else None)

        activity.Stats.HR = ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=activityData["avg_heartrate"] if "avg_heartrate" in activityData else None, max=activityData["max_heartrate"] if "max_heartrate" in activityData else None)
        activity.Stats.Cadence = ActivityStatistic(ActivityStatisticUnit.RevolutionsPerMinute, avg=activityData["avg_cadence"] if "avg_cadence" in activityData else None, max=activityData["max_cadence"] if "max_cadence" in activityData else None)
        activity.Stats.Power = ActivityStatistic(ActivityStatisticUnit.Watts, avg=activityData["avg_power"] if "avg_power" in activityData else None, max=activityData["max_power"] if "max_power" in activityData else None)

        laps_info = []
        laps_starts = []
        if "laps" in activityData:
            laps_info = activityData["laps"]
            for lap in activityData["laps"]:
                laps_starts.append(dateutil.parser.parse(lap["start_time"]))
        lap = None
        for lapinfo in laps_info:
            lap = Lap()
            activity.Laps.append(lap)
            lap.StartTime = dateutil.parser.parse(lapinfo["start_time"])
            lap.EndTime = lap.StartTime + timedelta(seconds=lapinfo["clock_duration"])
            if "type" in lapinfo:
                lap.Intensity = LapIntensity.Active if lapinfo["type"] == "ACTIVE" else LapIntensity.Rest
            if "distance" in lapinfo:
                lap.Stats.Distance = ActivityStatistic(ActivityStatisticUnit.Meters, value=float(lapinfo["distance"]))
            if "duration" in lapinfo:
                lap.Stats.TimerTime = ActivityStatistic(ActivityStatisticUnit.Seconds, value=lapinfo["duration"])
            if "calories" in lapinfo:
                lap.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilojoules, value=lapinfo["calories"])
            if "elevation_gain" in lapinfo:
                lap.Stats.Elevation.update(ActivityStatistic(ActivityStatisticUnit.Meters, gain=float(lapinfo["elevation_gain"])))
            if "elevation_loss" in lapinfo:
                lap.Stats.Elevation.update(ActivityStatistic(ActivityStatisticUnit.Meters, loss=float(lapinfo["elevation_loss"])))
            if "max_speed" in lapinfo:
                lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, max=float(lapinfo["max_speed"])))
            if "max_speed" in lapinfo:
                lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, max=float(lapinfo["max_speed"])))
            if "avg_speed" in lapinfo:
                lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, avg=float(lapinfo["avg_speed"])))
            if "max_heartrate" in lapinfo:
                lap.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, max=float(lapinfo["max_heartrate"])))
            if "avg_heartrate" in lapinfo:
                lap.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=float(lapinfo["avg_heartrate"])))
        if lap is None: # No explicit laps => make one that encompasses the entire activity
            lap = Lap()
            activity.Laps.append(lap)
            lap.Stats = activity.Stats
            lap.StartTime = activity.StartTime
            lap.EndTime = activity.EndTime
        elif len(activity.Laps) == 1:
            activity.Stats.update(activity.Laps[0].Stats) # Lap stats have a bit more info generally.
            activity.Laps[0].Stats = activity.Stats

        timerStops = []
        if "timer_stops" in activityData:
            for stop in activityData["timer_stops"]:
                timerStops.append([dateutil.parser.parse(stop[0]), dateutil.parser.parse(stop[1])])

        def isInTimerStop(timestamp):
            for stop in timerStops:
                if timestamp >= stop[0] and timestamp < stop[1]:
                    return True
                if timestamp >= stop[1]:
                    return False
            return False

        # Collate the individual streams into our waypoints.
        # Global sample rate is variable - will pick the next nearest stream datapoint.
        # Resampling happens on a lookbehind basis - new values will only appear their timestamp has been reached/passed

        wasInPause = False
        currentLapIdx = 0
        lap = activity.Laps[currentLapIdx]

        streams = []
        for stream in ["location", "elevation", "heartrate", "power", "cadence", "distance"]:
            if stream in activityData:
                streams.append(stream)
        stream_indices = dict([(stream, -1) for stream in streams]) # -1 meaning the stream has yet to start
        stream_lengths = dict([(stream, len(activityData[stream])/2) for stream in streams])
        # Data comes as "stream":[timestamp,value,timestamp,value,...]
        stream_values = {}
        for stream in streams:
            values = []
            for x in range(0,int(len(activityData[stream])/2)):
#.........這裏部分代碼省略.........
開發者ID:7e7,項目名稱:tapiriik,代碼行數:103,代碼來源:sporttracks.py

示例3: _downloadActivity

# 需要導入模塊: from tapiriik.services.interchange import Lap [as 別名]
# 或者: from tapiriik.services.interchange.Lap import StartTime [as 別名]
    def _downloadActivity(self, serviceRecord, activity, returnFirstLocation=False):
        activityURI = activity.ServiceData["ActivityURI"]
        cookies = self._get_cookies(record=serviceRecord)
        activityData = requests.get(activityURI, cookies=cookies)
        activityData = activityData.json()

        if "clock_duration" in activityData:
            activity.EndTime = activity.StartTime + timedelta(seconds=float(activityData["clock_duration"]))

        activity.Private = "sharing" in activityData and activityData["sharing"] != "public"

        if "notes" in activityData:
            activity.Notes = activityData["notes"]

        activity.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilojoules, value=float(activityData["calories"]))

        activity.Stats.Elevation = ActivityStatistic(ActivityStatisticUnit.Meters, gain=float(activityData["elevation_gain"]) if "elevation_gain" in activityData else None, loss=float(activityData["elevation_loss"]) if "elevation_loss" in activityData else None)

        activity.Stats.HR = ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=activityData["avg_heartrate"] if "avg_heartrate" in activityData else None, max=activityData["max_heartrate"] if "max_heartrate" in activityData else None)
        activity.Stats.Cadence = ActivityStatistic(ActivityStatisticUnit.RevolutionsPerMinute, avg=activityData["avg_cadence"] if "avg_cadence" in activityData else None, max=activityData["max_cadence"] if "max_cadence" in activityData else None)
        activity.Stats.Power = ActivityStatistic(ActivityStatisticUnit.Watts, avg=activityData["avg_power"] if "avg_power" in activityData else None, max=activityData["max_power"] if "max_power" in activityData else None)

        laps_info = []
        laps_starts = []
        if "laps" in activityData:
            laps_info = activityData["laps"]
            for lap in activityData["laps"]:
                laps_starts.append(dateutil.parser.parse(lap["start_time"]))
        lap = None
        for lapinfo in laps_info:
            lap = Lap()
            activity.Laps.append(lap)
            lap.StartTime = dateutil.parser.parse(lapinfo["start_time"])
            lap.EndTime = lap.StartTime + timedelta(seconds=lapinfo["clock_duration"])
            if "type" in lapinfo:
                lap.Intensity = LapIntensity.Active if lapinfo["type"] == "ACTIVE" else LapIntensity.Rest
            if "distance" in lapinfo:
                lap.Stats.Distance = ActivityStatistic(ActivityStatisticUnit.Meters, value=float(lapinfo["distance"]))
            if "duration" in lapinfo:
                lap.Stats.MovingTime = ActivityStatistic(ActivityStatisticUnit.Time, value=timedelta(seconds=lapinfo["duration"]))
            if "calories" in lapinfo:
                lap.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilojoules, value=lapinfo["calories"])
            if "elevation_gain" in lapinfo:
                lap.Stats.Elevation.update(ActivityStatistic(ActivityStatisticUnit.Meters, gain=float(lapinfo["elevation_gain"])))
            if "elevation_loss" in lapinfo:
                lap.Stats.Elevation.update(ActivityStatistic(ActivityStatisticUnit.Meters, loss=float(lapinfo["elevation_loss"])))
            if "max_speed" in lapinfo:
                lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, max=float(lapinfo["max_speed"])))
            if "max_speed" in lapinfo:
                lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, max=float(lapinfo["max_speed"])))
            if "avg_speed" in lapinfo:
                lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, avg=float(lapinfo["avg_speed"])))
            if "max_heartrate" in lapinfo:
                lap.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, max=float(lapinfo["max_heartrate"])))
            if "avg_heartrate" in lapinfo:
                lap.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=float(lapinfo["avg_heartrate"])))
        if lap is None: # No explicit laps => make one that encompasses the entire activity
            lap = Lap()
            activity.Laps.append(lap)
            lap.Stats = activity.Stats
            lap.StartTime = activity.StartTime
            lap.EndTime = activity.EndTime

        if "location" not in activityData:
            activity.Stationary = True
        else:
            activity.Stationary = False
            timerStops = []
            if "timer_stops" in activityData:
                for stop in activityData["timer_stops"]:
                    timerStops.append([dateutil.parser.parse(stop[0]), dateutil.parser.parse(stop[1])])

            def isInTimerStop(timestamp):
                for stop in timerStops:
                    if timestamp >= stop[0] and timestamp < stop[1]:
                        return True
                    if timestamp >= stop[1]:
                        return False
                return False

              # Collate the individual streams into our waypoints.
            # Everything is resampled by nearest-neighbour to the rate of the location stream.
            parallel_indices = {}
            parallel_stream_lengths = {}
            for secondary_stream in ["elevation", "heartrate", "power", "cadence", "distance"]:
                if secondary_stream in activityData:
                    parallel_indices[secondary_stream] = 0
                    parallel_stream_lengths[secondary_stream] = len(activityData[secondary_stream])

            wasInPause = False
            currentLapIdx = 0
            lap = activity.Laps[currentLapIdx]
            for idx in range(0, len(activityData["location"]), 2):
                # Pick the nearest indices in the parallel streams
                for parallel_stream, parallel_index in parallel_indices.items():
                    if parallel_index + 2 == parallel_stream_lengths[parallel_stream]:
                        continue  # We're at the end of this stream
                    # Is the next datapoint a better choice than the current?
                    if abs(activityData["location"][idx] - activityData[parallel_stream][parallel_index + 2]) < abs(activityData["location"][idx] - activityData[parallel_stream][parallel_index]):
                        parallel_indices[parallel_stream] += 2
#.........這裏部分代碼省略.........
開發者ID:CptanPanic,項目名稱:tapiriik,代碼行數:103,代碼來源:sporttracks.py

示例4: _downloadActivitySummary

# 需要導入模塊: from tapiriik.services.interchange import Lap [as 別名]
# 或者: from tapiriik.services.interchange.Lap import StartTime [as 別名]
    def _downloadActivitySummary(self, serviceRecord, activity):
        activityID = activity.ServiceData["ActivityID"]

        summary_resp = self._request_with_reauth(lambda session: session.get("https://connect.garmin.com/modern/proxy/activity-service/activity/" + str(activityID)), serviceRecord)

        try:
            summary_data = summary_resp.json()
        except ValueError:
            raise APIException("Failure downloading activity summary %s:%s" % (summary_resp.status_code, summary_resp.text))
        stat_map = {}


        def mapStat(gcKey, statKey, type, units):
            stat_map[gcKey] = {
                "key": statKey,
                "attr": type,
                "units": units
            }

        def applyStats(gc_dict, stats_obj):
            for gc_key, stat in stat_map.items():
                if gc_key in gc_dict:
                    value = float(gc_dict[gc_key])
                    if math.isinf(value):
                        continue # GC returns the minimum speed as "-Infinity" instead of 0 some times :S
                    getattr(stats_obj, stat["key"]).update(ActivityStatistic(stat["units"], **({stat["attr"]: value})))

        mapStat("movingDuration", "MovingTime", "value", ActivityStatisticUnit.Seconds)
        mapStat("duration", "TimerTime", "value", ActivityStatisticUnit.Seconds)
        mapStat("distance", "Distance", "value", ActivityStatisticUnit.Meters)
        mapStat("maxSpeed", "Speed", "max", ActivityStatisticUnit.MetersPerSecond)
        mapStat("averageSpeed", "Speed", "avg", ActivityStatisticUnit.MetersPerSecond)
        mapStat("calories", "Energy", "value", ActivityStatisticUnit.Kilocalories)
        mapStat("maxHR", "HR", "max", ActivityStatisticUnit.BeatsPerMinute)
        mapStat("averageHR", "HR", "avg", ActivityStatisticUnit.BeatsPerMinute)
        mapStat("minElevation", "Elevation", "min", ActivityStatisticUnit.Meters)
        mapStat("maxElevation", "Elevation", "max", ActivityStatisticUnit.Meters)
        mapStat("elevationGain", "Elevation", "gain", ActivityStatisticUnit.Meters)
        mapStat("elevationLoss", "Elevation", "loss", ActivityStatisticUnit.Meters)
        mapStat("averageBikeCadence", "Cadence", "avg", ActivityStatisticUnit.RevolutionsPerMinute)
        mapStat("averageCadence", "Cadence", "avg", ActivityStatisticUnit.StepsPerMinute)

        applyStats(summary_data["summaryDTO"], activity.Stats)

        laps_resp = self._request_with_reauth(lambda session: session.get("https://connect.garmin.com/modern/proxy/activity-service/activity/%s/splits" % str(activityID)), serviceRecord)
        try:
            laps_data = laps_resp.json()
        except ValueError:
            raise APIException("Failure downloading activity laps summary %s:%s" % (laps_resp.status_code, laps_resp.text))

        for lap_data in laps_data["lapDTOs"]:
            lap = Lap()
            if "startTimeGMT" in lap_data:
                lap.StartTime = pytz.utc.localize(datetime.strptime(lap_data["startTimeGMT"], "%Y-%m-%dT%H:%M:%S.0"))

            elapsed_duration = None
            if "elapsedDuration" in lap_data:
                elapsed_duration = timedelta(seconds=round(float(lap_data["elapsedDuration"])))
            elif "duration" in lap_data:
                elapsed_duration = timedelta(seconds=round(float(lap_data["duration"])))

            if lap.StartTime and elapsed_duration:
                # Always recalculate end time based on duration, if we have the start time
                lap.EndTime = lap.StartTime + elapsed_duration
            if not lap.StartTime and lap.EndTime and elapsed_duration:
                # Sometimes calculate start time based on duration
                lap.StartTime = lap.EndTime - elapsed_duration

            if not lap.StartTime or not lap.EndTime:
                # Garmin Connect is weird.
                raise APIExcludeActivity("Activity lap has no BeginTimestamp or EndTimestamp", user_exception=UserException(UserExceptionType.Corrupt))

            applyStats(lap_data, lap.Stats)
            activity.Laps.append(lap)

        # In Garmin Land, max can be smaller than min for this field :S
        if activity.Stats.Power.Max is not None and activity.Stats.Power.Min is not None and activity.Stats.Power.Min > activity.Stats.Power.Max:
            activity.Stats.Power.Min = None
開發者ID:naveed-ahmad,項目名稱:tapiriik,代碼行數:80,代碼來源:garminconnect.py

示例5: _downloadActivitySummary

# 需要導入模塊: from tapiriik.services.interchange import Lap [as 別名]
# 或者: from tapiriik.services.interchange.Lap import StartTime [as 別名]
    def _downloadActivitySummary(self, serviceRecord, activity):
        activityID = activity.ServiceData["ActivityID"]
        cookies = self._get_cookies(record=serviceRecord)
        self._rate_limit()
        res = requests.get("https://connect.garmin.com/proxy/activity-service-1.3/json/activity/" + str(activityID), cookies=cookies)

        try:
            raw_data = res.json()
        except ValueError:
            raise APIException("Failure downloading activity summary %s:%s" % (res.status_code, res.text))
        stat_map = {}
        def mapStat(gcKey, statKey, type):
            stat_map[gcKey] = {
                "key": statKey,
                "attr": type
            }

        def applyStats(gc_dict, stats_obj):
            for gc_key, stat in stat_map.items():
                if gc_key in gc_dict:
                    value = float(gc_dict[gc_key]["value"])
                    units = self._unitMap[gc_dict[gc_key]["uom"]]
                    if math.isinf(value):
                        continue # GC returns the minimum speed as "-Infinity" instead of 0 some times :S
                    getattr(stats_obj, stat["key"]).update(ActivityStatistic(units, **({stat["attr"]: value})))

        mapStat("SumMovingDuration", "MovingTime", "value")
        mapStat("SumDuration", "TimerTime", "value")
        mapStat("SumDistance", "Distance", "value")
        mapStat("MinSpeed", "Speed", "min")
        mapStat("MaxSpeed", "Speed", "max")
        mapStat("WeightedMeanSpeed", "Speed", "avg")
        mapStat("MinAirTemperature", "Temperature", "min")
        mapStat("MaxAirTemperature", "Temperature", "max")
        mapStat("WeightedMeanAirTemperature", "Temperature", "avg")
        mapStat("SumEnergy", "Energy", "value")
        mapStat("MaxHeartRate", "HR", "max")
        mapStat("WeightedMeanHeartRate", "HR", "avg")
        mapStat("MaxDoubleCadence", "RunCadence", "max")
        mapStat("WeightedMeanDoubleCadence", "RunCadence", "avg")
        mapStat("MaxBikeCadence", "Cadence", "max")
        mapStat("WeightedMeanBikeCadence", "Cadence", "avg")
        mapStat("MinPower", "Power", "min")
        mapStat("MaxPower", "Power", "max")
        mapStat("WeightedMeanPower", "Power", "avg")
        mapStat("MinElevation", "Elevation", "min")
        mapStat("MaxElevation", "Elevation", "max")
        mapStat("GainElevation", "Elevation", "gain")
        mapStat("LossElevation", "Elevation", "loss")

        applyStats(raw_data["activity"]["activitySummary"], activity.Stats)

        for lap_data in raw_data["activity"]["totalLaps"]["lapSummaryList"]:
            lap = Lap()
            lap.StartTime = pytz.utc.localize(datetime.utcfromtimestamp(float(lap_data["BeginTimestamp"]["value"]) / 1000))
            lap.EndTime = pytz.utc.localize(datetime.utcfromtimestamp(float(lap_data["EndTimestamp"]["value"]) / 1000))
            applyStats(lap_data, lap.Stats)
            activity.Laps.append(lap)

        # In Garmin Land, max can be smaller than min for this field :S
        if activity.Stats.Power.Max is not None and activity.Stats.Power.Min is not None and activity.Stats.Power.Min > activity.Stats.Power.Max:
            activity.Stats.Power.Min = None
開發者ID:jbuckner,項目名稱:tapiriik,代碼行數:64,代碼來源:garminconnect.py


注:本文中的tapiriik.services.interchange.Lap.StartTime方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。