本文整理匯總了Python中tapiriik.services.interchange.Lap.StartTime方法的典型用法代碼示例。如果您正苦於以下問題:Python Lap.StartTime方法的具體用法?Python Lap.StartTime怎麽用?Python Lap.StartTime使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tapiriik.services.interchange.Lap
的用法示例。
在下文中一共展示了Lap.StartTime方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _downloadActivitySummary
# 需要導入模塊: from tapiriik.services.interchange import Lap [as 別名]
# 或者: from tapiriik.services.interchange.Lap import StartTime [as 別名]
def _downloadActivitySummary(self, serviceRecord, activity):
activityID = activity.ServiceData["ActivityID"]
session = self._get_session(record=serviceRecord)
self._rate_limit()
res = session.get("http://connect.garmin.com/proxy/activity-service-1.3/json/activity/" + str(activityID))
try:
raw_data = res.json()
except ValueError:
raise APIException("Failure downloading activity summary %s:%s" % (res.status_code, res.text))
stat_map = {}
def mapStat(gcKey, statKey, type):
stat_map[gcKey] = {
"key": statKey,
"attr": type
}
def applyStats(gc_dict, stats_obj):
for gc_key, stat in stat_map.items():
if gc_key in gc_dict:
value = float(gc_dict[gc_key]["value"])
units = self._unitMap[gc_dict[gc_key]["uom"]]
if math.isinf(value):
continue # GC returns the minimum speed as "-Infinity" instead of 0 some times :S
getattr(stats_obj, stat["key"]).update(ActivityStatistic(units, **({stat["attr"]: value})))
mapStat("SumMovingDuration", "MovingTime", "value")
mapStat("SumDuration", "TimerTime", "value")
mapStat("SumDistance", "Distance", "value")
mapStat("MinSpeed", "Speed", "min")
mapStat("MaxSpeed", "Speed", "max")
mapStat("WeightedMeanSpeed", "Speed", "avg")
mapStat("MinAirTemperature", "Temperature", "min")
mapStat("MaxAirTemperature", "Temperature", "max")
mapStat("WeightedMeanAirTemperature", "Temperature", "avg")
mapStat("SumEnergy", "Energy", "value")
mapStat("MaxHeartRate", "HR", "max")
mapStat("WeightedMeanHeartRate", "HR", "avg")
mapStat("MaxDoubleCadence", "RunCadence", "max")
mapStat("WeightedMeanDoubleCadence", "RunCadence", "avg")
mapStat("MaxBikeCadence", "Cadence", "max")
mapStat("WeightedMeanBikeCadence", "Cadence", "avg")
mapStat("MinPower", "Power", "min")
mapStat("MaxPower", "Power", "max")
mapStat("WeightedMeanPower", "Power", "avg")
mapStat("MinElevation", "Elevation", "min")
mapStat("MaxElevation", "Elevation", "max")
mapStat("GainElevation", "Elevation", "gain")
mapStat("LossElevation", "Elevation", "loss")
applyStats(raw_data["activity"]["activitySummary"], activity.Stats)
for lap_data in raw_data["activity"]["totalLaps"]["lapSummaryList"]:
lap = Lap()
if "BeginTimestamp" in lap_data:
lap.StartTime = pytz.utc.localize(datetime.utcfromtimestamp(float(lap_data["BeginTimestamp"]["value"]) / 1000))
if "EndTimestamp" in lap_data:
lap.EndTime = pytz.utc.localize(datetime.utcfromtimestamp(float(lap_data["EndTimestamp"]["value"]) / 1000))
elapsed_duration = None
if "SumElapsedDuration" in lap_data:
elapsed_duration = timedelta(seconds=round(float(lap_data["SumElapsedDuration"]["value"])))
elif "SumDuration" in lap_data:
elapsed_duration = timedelta(seconds=round(float(lap_data["SumDuration"]["value"])))
if lap.StartTime and elapsed_duration:
# Always recalculate end time based on duration, if we have the start time
lap.EndTime = lap.StartTime + elapsed_duration
if not lap.StartTime and lap.EndTime and elapsed_duration:
# Sometimes calculate start time based on duration
lap.StartTime = lap.EndTime - elapsed_duration
if not lap.StartTime or not lap.EndTime:
# Garmin Connect is weird.
raise APIExcludeActivity("Activity lap has no BeginTimestamp or EndTimestamp", userException=UserException(UserExceptionType.Corrupt))
applyStats(lap_data, lap.Stats)
activity.Laps.append(lap)
# In Garmin Land, max can be smaller than min for this field :S
if activity.Stats.Power.Max is not None and activity.Stats.Power.Min is not None and activity.Stats.Power.Min > activity.Stats.Power.Max:
activity.Stats.Power.Min = None
示例2: _downloadActivity
# 需要導入模塊: from tapiriik.services.interchange import Lap [as 別名]
# 或者: from tapiriik.services.interchange.Lap import StartTime [as 別名]
def _downloadActivity(self, serviceRecord, activity, returnFirstLocation=False):
activityURI = activity.ServiceData["ActivityURI"]
headers = self._getAuthHeaders(serviceRecord)
activityData = requests.get(activityURI, headers=headers)
activityData = activityData.json()
if "clock_duration" in activityData:
activity.EndTime = activity.StartTime + timedelta(seconds=float(activityData["clock_duration"]))
activity.Private = "sharing" in activityData and activityData["sharing"] != "public"
activity.GPS = False # Gets set back if there is GPS data
if "notes" in activityData:
activity.Notes = activityData["notes"]
activity.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilojoules, value=float(activityData["calories"]))
activity.Stats.Elevation = ActivityStatistic(ActivityStatisticUnit.Meters, gain=float(activityData["elevation_gain"]) if "elevation_gain" in activityData else None, loss=float(activityData["elevation_loss"]) if "elevation_loss" in activityData else None)
activity.Stats.HR = ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=activityData["avg_heartrate"] if "avg_heartrate" in activityData else None, max=activityData["max_heartrate"] if "max_heartrate" in activityData else None)
activity.Stats.Cadence = ActivityStatistic(ActivityStatisticUnit.RevolutionsPerMinute, avg=activityData["avg_cadence"] if "avg_cadence" in activityData else None, max=activityData["max_cadence"] if "max_cadence" in activityData else None)
activity.Stats.Power = ActivityStatistic(ActivityStatisticUnit.Watts, avg=activityData["avg_power"] if "avg_power" in activityData else None, max=activityData["max_power"] if "max_power" in activityData else None)
laps_info = []
laps_starts = []
if "laps" in activityData:
laps_info = activityData["laps"]
for lap in activityData["laps"]:
laps_starts.append(dateutil.parser.parse(lap["start_time"]))
lap = None
for lapinfo in laps_info:
lap = Lap()
activity.Laps.append(lap)
lap.StartTime = dateutil.parser.parse(lapinfo["start_time"])
lap.EndTime = lap.StartTime + timedelta(seconds=lapinfo["clock_duration"])
if "type" in lapinfo:
lap.Intensity = LapIntensity.Active if lapinfo["type"] == "ACTIVE" else LapIntensity.Rest
if "distance" in lapinfo:
lap.Stats.Distance = ActivityStatistic(ActivityStatisticUnit.Meters, value=float(lapinfo["distance"]))
if "duration" in lapinfo:
lap.Stats.TimerTime = ActivityStatistic(ActivityStatisticUnit.Seconds, value=lapinfo["duration"])
if "calories" in lapinfo:
lap.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilojoules, value=lapinfo["calories"])
if "elevation_gain" in lapinfo:
lap.Stats.Elevation.update(ActivityStatistic(ActivityStatisticUnit.Meters, gain=float(lapinfo["elevation_gain"])))
if "elevation_loss" in lapinfo:
lap.Stats.Elevation.update(ActivityStatistic(ActivityStatisticUnit.Meters, loss=float(lapinfo["elevation_loss"])))
if "max_speed" in lapinfo:
lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, max=float(lapinfo["max_speed"])))
if "max_speed" in lapinfo:
lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, max=float(lapinfo["max_speed"])))
if "avg_speed" in lapinfo:
lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, avg=float(lapinfo["avg_speed"])))
if "max_heartrate" in lapinfo:
lap.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, max=float(lapinfo["max_heartrate"])))
if "avg_heartrate" in lapinfo:
lap.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=float(lapinfo["avg_heartrate"])))
if lap is None: # No explicit laps => make one that encompasses the entire activity
lap = Lap()
activity.Laps.append(lap)
lap.Stats = activity.Stats
lap.StartTime = activity.StartTime
lap.EndTime = activity.EndTime
elif len(activity.Laps) == 1:
activity.Stats.update(activity.Laps[0].Stats) # Lap stats have a bit more info generally.
activity.Laps[0].Stats = activity.Stats
timerStops = []
if "timer_stops" in activityData:
for stop in activityData["timer_stops"]:
timerStops.append([dateutil.parser.parse(stop[0]), dateutil.parser.parse(stop[1])])
def isInTimerStop(timestamp):
for stop in timerStops:
if timestamp >= stop[0] and timestamp < stop[1]:
return True
if timestamp >= stop[1]:
return False
return False
# Collate the individual streams into our waypoints.
# Global sample rate is variable - will pick the next nearest stream datapoint.
# Resampling happens on a lookbehind basis - new values will only appear their timestamp has been reached/passed
wasInPause = False
currentLapIdx = 0
lap = activity.Laps[currentLapIdx]
streams = []
for stream in ["location", "elevation", "heartrate", "power", "cadence", "distance"]:
if stream in activityData:
streams.append(stream)
stream_indices = dict([(stream, -1) for stream in streams]) # -1 meaning the stream has yet to start
stream_lengths = dict([(stream, len(activityData[stream])/2) for stream in streams])
# Data comes as "stream":[timestamp,value,timestamp,value,...]
stream_values = {}
for stream in streams:
values = []
for x in range(0,int(len(activityData[stream])/2)):
#.........這裏部分代碼省略.........
示例3: _downloadActivity
# 需要導入模塊: from tapiriik.services.interchange import Lap [as 別名]
# 或者: from tapiriik.services.interchange.Lap import StartTime [as 別名]
def _downloadActivity(self, serviceRecord, activity, returnFirstLocation=False):
activityURI = activity.ServiceData["ActivityURI"]
cookies = self._get_cookies(record=serviceRecord)
activityData = requests.get(activityURI, cookies=cookies)
activityData = activityData.json()
if "clock_duration" in activityData:
activity.EndTime = activity.StartTime + timedelta(seconds=float(activityData["clock_duration"]))
activity.Private = "sharing" in activityData and activityData["sharing"] != "public"
if "notes" in activityData:
activity.Notes = activityData["notes"]
activity.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilojoules, value=float(activityData["calories"]))
activity.Stats.Elevation = ActivityStatistic(ActivityStatisticUnit.Meters, gain=float(activityData["elevation_gain"]) if "elevation_gain" in activityData else None, loss=float(activityData["elevation_loss"]) if "elevation_loss" in activityData else None)
activity.Stats.HR = ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=activityData["avg_heartrate"] if "avg_heartrate" in activityData else None, max=activityData["max_heartrate"] if "max_heartrate" in activityData else None)
activity.Stats.Cadence = ActivityStatistic(ActivityStatisticUnit.RevolutionsPerMinute, avg=activityData["avg_cadence"] if "avg_cadence" in activityData else None, max=activityData["max_cadence"] if "max_cadence" in activityData else None)
activity.Stats.Power = ActivityStatistic(ActivityStatisticUnit.Watts, avg=activityData["avg_power"] if "avg_power" in activityData else None, max=activityData["max_power"] if "max_power" in activityData else None)
laps_info = []
laps_starts = []
if "laps" in activityData:
laps_info = activityData["laps"]
for lap in activityData["laps"]:
laps_starts.append(dateutil.parser.parse(lap["start_time"]))
lap = None
for lapinfo in laps_info:
lap = Lap()
activity.Laps.append(lap)
lap.StartTime = dateutil.parser.parse(lapinfo["start_time"])
lap.EndTime = lap.StartTime + timedelta(seconds=lapinfo["clock_duration"])
if "type" in lapinfo:
lap.Intensity = LapIntensity.Active if lapinfo["type"] == "ACTIVE" else LapIntensity.Rest
if "distance" in lapinfo:
lap.Stats.Distance = ActivityStatistic(ActivityStatisticUnit.Meters, value=float(lapinfo["distance"]))
if "duration" in lapinfo:
lap.Stats.MovingTime = ActivityStatistic(ActivityStatisticUnit.Time, value=timedelta(seconds=lapinfo["duration"]))
if "calories" in lapinfo:
lap.Stats.Energy = ActivityStatistic(ActivityStatisticUnit.Kilojoules, value=lapinfo["calories"])
if "elevation_gain" in lapinfo:
lap.Stats.Elevation.update(ActivityStatistic(ActivityStatisticUnit.Meters, gain=float(lapinfo["elevation_gain"])))
if "elevation_loss" in lapinfo:
lap.Stats.Elevation.update(ActivityStatistic(ActivityStatisticUnit.Meters, loss=float(lapinfo["elevation_loss"])))
if "max_speed" in lapinfo:
lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, max=float(lapinfo["max_speed"])))
if "max_speed" in lapinfo:
lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, max=float(lapinfo["max_speed"])))
if "avg_speed" in lapinfo:
lap.Stats.Speed.update(ActivityStatistic(ActivityStatisticUnit.MetersPerSecond, avg=float(lapinfo["avg_speed"])))
if "max_heartrate" in lapinfo:
lap.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, max=float(lapinfo["max_heartrate"])))
if "avg_heartrate" in lapinfo:
lap.Stats.HR.update(ActivityStatistic(ActivityStatisticUnit.BeatsPerMinute, avg=float(lapinfo["avg_heartrate"])))
if lap is None: # No explicit laps => make one that encompasses the entire activity
lap = Lap()
activity.Laps.append(lap)
lap.Stats = activity.Stats
lap.StartTime = activity.StartTime
lap.EndTime = activity.EndTime
if "location" not in activityData:
activity.Stationary = True
else:
activity.Stationary = False
timerStops = []
if "timer_stops" in activityData:
for stop in activityData["timer_stops"]:
timerStops.append([dateutil.parser.parse(stop[0]), dateutil.parser.parse(stop[1])])
def isInTimerStop(timestamp):
for stop in timerStops:
if timestamp >= stop[0] and timestamp < stop[1]:
return True
if timestamp >= stop[1]:
return False
return False
# Collate the individual streams into our waypoints.
# Everything is resampled by nearest-neighbour to the rate of the location stream.
parallel_indices = {}
parallel_stream_lengths = {}
for secondary_stream in ["elevation", "heartrate", "power", "cadence", "distance"]:
if secondary_stream in activityData:
parallel_indices[secondary_stream] = 0
parallel_stream_lengths[secondary_stream] = len(activityData[secondary_stream])
wasInPause = False
currentLapIdx = 0
lap = activity.Laps[currentLapIdx]
for idx in range(0, len(activityData["location"]), 2):
# Pick the nearest indices in the parallel streams
for parallel_stream, parallel_index in parallel_indices.items():
if parallel_index + 2 == parallel_stream_lengths[parallel_stream]:
continue # We're at the end of this stream
# Is the next datapoint a better choice than the current?
if abs(activityData["location"][idx] - activityData[parallel_stream][parallel_index + 2]) < abs(activityData["location"][idx] - activityData[parallel_stream][parallel_index]):
parallel_indices[parallel_stream] += 2
#.........這裏部分代碼省略.........
示例4: _downloadActivitySummary
# 需要導入模塊: from tapiriik.services.interchange import Lap [as 別名]
# 或者: from tapiriik.services.interchange.Lap import StartTime [as 別名]
def _downloadActivitySummary(self, serviceRecord, activity):
activityID = activity.ServiceData["ActivityID"]
summary_resp = self._request_with_reauth(lambda session: session.get("https://connect.garmin.com/modern/proxy/activity-service/activity/" + str(activityID)), serviceRecord)
try:
summary_data = summary_resp.json()
except ValueError:
raise APIException("Failure downloading activity summary %s:%s" % (summary_resp.status_code, summary_resp.text))
stat_map = {}
def mapStat(gcKey, statKey, type, units):
stat_map[gcKey] = {
"key": statKey,
"attr": type,
"units": units
}
def applyStats(gc_dict, stats_obj):
for gc_key, stat in stat_map.items():
if gc_key in gc_dict:
value = float(gc_dict[gc_key])
if math.isinf(value):
continue # GC returns the minimum speed as "-Infinity" instead of 0 some times :S
getattr(stats_obj, stat["key"]).update(ActivityStatistic(stat["units"], **({stat["attr"]: value})))
mapStat("movingDuration", "MovingTime", "value", ActivityStatisticUnit.Seconds)
mapStat("duration", "TimerTime", "value", ActivityStatisticUnit.Seconds)
mapStat("distance", "Distance", "value", ActivityStatisticUnit.Meters)
mapStat("maxSpeed", "Speed", "max", ActivityStatisticUnit.MetersPerSecond)
mapStat("averageSpeed", "Speed", "avg", ActivityStatisticUnit.MetersPerSecond)
mapStat("calories", "Energy", "value", ActivityStatisticUnit.Kilocalories)
mapStat("maxHR", "HR", "max", ActivityStatisticUnit.BeatsPerMinute)
mapStat("averageHR", "HR", "avg", ActivityStatisticUnit.BeatsPerMinute)
mapStat("minElevation", "Elevation", "min", ActivityStatisticUnit.Meters)
mapStat("maxElevation", "Elevation", "max", ActivityStatisticUnit.Meters)
mapStat("elevationGain", "Elevation", "gain", ActivityStatisticUnit.Meters)
mapStat("elevationLoss", "Elevation", "loss", ActivityStatisticUnit.Meters)
mapStat("averageBikeCadence", "Cadence", "avg", ActivityStatisticUnit.RevolutionsPerMinute)
mapStat("averageCadence", "Cadence", "avg", ActivityStatisticUnit.StepsPerMinute)
applyStats(summary_data["summaryDTO"], activity.Stats)
laps_resp = self._request_with_reauth(lambda session: session.get("https://connect.garmin.com/modern/proxy/activity-service/activity/%s/splits" % str(activityID)), serviceRecord)
try:
laps_data = laps_resp.json()
except ValueError:
raise APIException("Failure downloading activity laps summary %s:%s" % (laps_resp.status_code, laps_resp.text))
for lap_data in laps_data["lapDTOs"]:
lap = Lap()
if "startTimeGMT" in lap_data:
lap.StartTime = pytz.utc.localize(datetime.strptime(lap_data["startTimeGMT"], "%Y-%m-%dT%H:%M:%S.0"))
elapsed_duration = None
if "elapsedDuration" in lap_data:
elapsed_duration = timedelta(seconds=round(float(lap_data["elapsedDuration"])))
elif "duration" in lap_data:
elapsed_duration = timedelta(seconds=round(float(lap_data["duration"])))
if lap.StartTime and elapsed_duration:
# Always recalculate end time based on duration, if we have the start time
lap.EndTime = lap.StartTime + elapsed_duration
if not lap.StartTime and lap.EndTime and elapsed_duration:
# Sometimes calculate start time based on duration
lap.StartTime = lap.EndTime - elapsed_duration
if not lap.StartTime or not lap.EndTime:
# Garmin Connect is weird.
raise APIExcludeActivity("Activity lap has no BeginTimestamp or EndTimestamp", user_exception=UserException(UserExceptionType.Corrupt))
applyStats(lap_data, lap.Stats)
activity.Laps.append(lap)
# In Garmin Land, max can be smaller than min for this field :S
if activity.Stats.Power.Max is not None and activity.Stats.Power.Min is not None and activity.Stats.Power.Min > activity.Stats.Power.Max:
activity.Stats.Power.Min = None
示例5: _downloadActivitySummary
# 需要導入模塊: from tapiriik.services.interchange import Lap [as 別名]
# 或者: from tapiriik.services.interchange.Lap import StartTime [as 別名]
def _downloadActivitySummary(self, serviceRecord, activity):
activityID = activity.ServiceData["ActivityID"]
cookies = self._get_cookies(record=serviceRecord)
self._rate_limit()
res = requests.get("https://connect.garmin.com/proxy/activity-service-1.3/json/activity/" + str(activityID), cookies=cookies)
try:
raw_data = res.json()
except ValueError:
raise APIException("Failure downloading activity summary %s:%s" % (res.status_code, res.text))
stat_map = {}
def mapStat(gcKey, statKey, type):
stat_map[gcKey] = {
"key": statKey,
"attr": type
}
def applyStats(gc_dict, stats_obj):
for gc_key, stat in stat_map.items():
if gc_key in gc_dict:
value = float(gc_dict[gc_key]["value"])
units = self._unitMap[gc_dict[gc_key]["uom"]]
if math.isinf(value):
continue # GC returns the minimum speed as "-Infinity" instead of 0 some times :S
getattr(stats_obj, stat["key"]).update(ActivityStatistic(units, **({stat["attr"]: value})))
mapStat("SumMovingDuration", "MovingTime", "value")
mapStat("SumDuration", "TimerTime", "value")
mapStat("SumDistance", "Distance", "value")
mapStat("MinSpeed", "Speed", "min")
mapStat("MaxSpeed", "Speed", "max")
mapStat("WeightedMeanSpeed", "Speed", "avg")
mapStat("MinAirTemperature", "Temperature", "min")
mapStat("MaxAirTemperature", "Temperature", "max")
mapStat("WeightedMeanAirTemperature", "Temperature", "avg")
mapStat("SumEnergy", "Energy", "value")
mapStat("MaxHeartRate", "HR", "max")
mapStat("WeightedMeanHeartRate", "HR", "avg")
mapStat("MaxDoubleCadence", "RunCadence", "max")
mapStat("WeightedMeanDoubleCadence", "RunCadence", "avg")
mapStat("MaxBikeCadence", "Cadence", "max")
mapStat("WeightedMeanBikeCadence", "Cadence", "avg")
mapStat("MinPower", "Power", "min")
mapStat("MaxPower", "Power", "max")
mapStat("WeightedMeanPower", "Power", "avg")
mapStat("MinElevation", "Elevation", "min")
mapStat("MaxElevation", "Elevation", "max")
mapStat("GainElevation", "Elevation", "gain")
mapStat("LossElevation", "Elevation", "loss")
applyStats(raw_data["activity"]["activitySummary"], activity.Stats)
for lap_data in raw_data["activity"]["totalLaps"]["lapSummaryList"]:
lap = Lap()
lap.StartTime = pytz.utc.localize(datetime.utcfromtimestamp(float(lap_data["BeginTimestamp"]["value"]) / 1000))
lap.EndTime = pytz.utc.localize(datetime.utcfromtimestamp(float(lap_data["EndTimestamp"]["value"]) / 1000))
applyStats(lap_data, lap.Stats)
activity.Laps.append(lap)
# In Garmin Land, max can be smaller than min for this field :S
if activity.Stats.Power.Max is not None and activity.Stats.Power.Min is not None and activity.Stats.Power.Min > activity.Stats.Power.Max:
activity.Stats.Power.Min = None