本文整理匯總了Python中sympy.sets.sets.Interval類的典型用法代碼示例。如果您正苦於以下問題:Python Interval類的具體用法?Python Interval怎麽用?Python Interval使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Interval類的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_range_interval_intersection
def test_range_interval_intersection():
p = symbols('p', positive=True)
assert isinstance(Range(3).intersect(Interval(p, p + 2)), Intersection)
assert Range(4).intersect(Interval(0, 3)) == Range(4)
assert Range(4).intersect(Interval(-oo, oo)) == Range(4)
assert Range(4).intersect(Interval(1, oo)) == Range(1, 4)
assert Range(4).intersect(Interval(1.1, oo)) == Range(2, 4)
assert Range(4).intersect(Interval(0.1, 3)) == Range(1, 4)
assert Range(4).intersect(Interval(0.1, 3.1)) == Range(1, 4)
assert Range(4).intersect(Interval.open(0, 3)) == Range(1, 3)
assert Range(4).intersect(Interval.open(0.1, 0.5)) is S.EmptySet
示例2: test_continuous_domain
def test_continuous_domain():
x = Symbol('x')
assert continuous_domain(sin(x), x, Interval(0, 2*pi)) == Interval(0, 2*pi)
assert continuous_domain(tan(x), x, Interval(0, 2*pi)) == \
Union(Interval(0, pi/2, False, True), Interval(pi/2, 3*pi/2, True, True),
Interval(3*pi/2, 2*pi, True, False))
assert continuous_domain((x - 1)/((x - 1)**2), x, S.Reals) == \
Union(Interval(-oo, 1, True, True), Interval(1, oo, True, True))
assert continuous_domain(log(x) + log(4*x - 1), x, S.Reals) == \
Interval(1/4, oo, True, True)
assert continuous_domain(1/sqrt(x - 3), x, S.Reals) == Interval(3, oo, True, True)
assert continuous_domain(1/x - 2, x, S.Reals) == \
Union(Interval.open(-oo, 0), Interval.open(0, oo))
assert continuous_domain(1/(x**2 - 4) + 2, x, S.Reals) == \
Union(Interval.open(-oo, -2), Interval.open(-2, 2), Interval.open(2, oo))
示例3: test_bool_as_set
def test_bool_as_set():
assert ITE(y <= 0, False, y >= 1).as_set() == Interval(1, oo)
assert And(x <= 2, x >= -2).as_set() == Interval(-2, 2)
assert Or(x >= 2, x <= -2).as_set() == Interval(-oo, -2) + Interval(2, oo)
assert Not(x > 2).as_set() == Interval(-oo, 2)
# issue 10240
assert Not(And(x > 2, x < 3)).as_set() == \
Union(Interval(-oo, 2), Interval(3, oo))
assert true.as_set() == S.UniversalSet
assert false.as_set() == EmptySet()
assert x.as_set() == S.UniversalSet
assert And(Or(x < 1, x > 3), x < 2).as_set() == Interval.open(-oo, 1)
assert And(x < 1, sin(x) < 3).as_set() == (x < 1).as_set()
raises(NotImplementedError, lambda: (sin(x) < 1).as_set())
示例4: __new__
def __new__(cls):
return Interval.__new__(cls, -S.Infinity, S.Infinity)
示例5: test_normalize_theta_set
def test_normalize_theta_set():
# Interval
assert normalize_theta_set(Interval(pi, 2*pi)) == \
Union(FiniteSet(0), Interval.Ropen(pi, 2*pi))
assert normalize_theta_set(Interval(9*pi/2, 5*pi)) == Interval(pi/2, pi)
assert normalize_theta_set(Interval(-3*pi/2, pi/2)) == Interval.Ropen(0, 2*pi)
assert normalize_theta_set(Interval.open(-3*pi/2, pi/2)) == \
Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi))
assert normalize_theta_set(Interval.open(-7*pi/2, -3*pi/2)) == \
Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi))
assert normalize_theta_set(Interval(-pi/2, pi/2)) == \
Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
assert normalize_theta_set(Interval.open(-pi/2, pi/2)) == \
Union(Interval.Ropen(0, pi/2), Interval.open(3*pi/2, 2*pi))
assert normalize_theta_set(Interval(-4*pi, 3*pi)) == Interval.Ropen(0, 2*pi)
assert normalize_theta_set(Interval(-3*pi/2, -pi/2)) == Interval(pi/2, 3*pi/2)
assert normalize_theta_set(Interval.open(0, 2*pi)) == Interval.open(0, 2*pi)
assert normalize_theta_set(Interval.Ropen(-pi/2, pi/2)) == \
Union(Interval.Ropen(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
assert normalize_theta_set(Interval.Lopen(-pi/2, pi/2)) == \
Union(Interval(0, pi/2), Interval.open(3*pi/2, 2*pi))
assert normalize_theta_set(Interval(-pi/2, pi/2)) == \
Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
assert normalize_theta_set(Interval.open(4*pi, 9*pi/2)) == Interval.open(0, pi/2)
assert normalize_theta_set(Interval.Lopen(4*pi, 9*pi/2)) == Interval.Lopen(0, pi/2)
assert normalize_theta_set(Interval.Ropen(4*pi, 9*pi/2)) == Interval.Ropen(0, pi/2)
assert normalize_theta_set(Interval.open(3*pi, 5*pi)) == \
Union(Interval.Ropen(0, pi), Interval.open(pi, 2*pi))
# FiniteSet
assert normalize_theta_set(FiniteSet(0, pi, 3*pi)) == FiniteSet(0, pi)
assert normalize_theta_set(FiniteSet(0, pi/2, pi, 2*pi)) == FiniteSet(0, pi/2, pi)
assert normalize_theta_set(FiniteSet(0, -pi/2, -pi, -2*pi)) == FiniteSet(0, pi, 3*pi/2)
assert normalize_theta_set(FiniteSet(-3*pi/2, pi/2)) == \
FiniteSet(pi/2)
assert normalize_theta_set(FiniteSet(2*pi)) == FiniteSet(0)
# Unions
assert normalize_theta_set(Union(Interval(0, pi/3), Interval(pi/2, pi))) == \
Union(Interval(0, pi/3), Interval(pi/2, pi))
assert normalize_theta_set(Union(Interval(0, pi), Interval(2*pi, 7*pi/3))) == \
Interval(0, pi)
# ValueError for non-real sets
raises(ValueError, lambda: normalize_theta_set(S.Complexes))