本文整理匯總了Python中sympy.physics.mechanics.Particle類的典型用法代碼示例。如果您正苦於以下問題:Python Particle類的具體用法?Python Particle怎麽用?Python Particle使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Particle類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_one_dof
def test_one_dof():
# This is for a 1 dof spring-mass-damper case.
# It is described in more detail in the Kane docstring.
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, c, k = symbols('m c k')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, u * N.x)
kd = [qd - u]
FL = [(P, (-k * q - c * u) * N.x)]
pa = Particle()
pa.mass = m
pa.point = P
BL = [pa]
KM = Kane(N)
KM.coords([q])
KM.speeds([u])
KM.kindiffeq(kd)
KM.kanes_equations(FL, BL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand(-(q * k + u * c) / m)
assert KM.linearize() == (Matrix([[0, 1], [k, c]]), Matrix([]))
示例2: test_pend
def test_pend():
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u', 1)
m, l, g = symbols('m l g')
N = ReferenceFrame('N')
P = Point('P')
P.set_vel(N, -l * u * sin(q) * N.x + l * u * cos(q) * N.y)
kd = [qd - u]
FL = [(P, m * g * N.x)]
pa = Particle()
pa.mass = m
pa.point = P
BL = [pa]
KM = Kane(N)
KM.coords([q])
KM.speeds([u])
KM.kindiffeq(kd)
KM.kanes_equations(FL, BL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
rhs.simplify()
assert expand(rhs[0]) == expand(-g / l * sin(q))
示例3: test_particle
def test_particle():
m = Symbol('m')
P = Point('P')
p = Particle()
assert p.mass == None
assert p.point == None
# Test the mass setter
p.mass = m
assert p.mass == m
# Test the point setter
p.point = P
assert p.point == P
示例4: test_particle
def test_particle():
m, m2 = symbols("m m2")
P = Point("P")
P2 = Point("P2")
p = Particle("pa", P, m)
assert p.mass == m
assert p.point == P
# Test the mass setter
p.mass = m2
assert p.mass == m2
# Test the point setter
p.point = P2
assert p.point == P2
示例5: test_dub_pen
def test_dub_pen():
# The system considered is the double pendulum. Like in the
# test of the simple pendulum above, we begin by creating the generalized
# coordinates and the simple generalized speeds and accelerations which
# will be used later. Following this we create frames and points necessary
# for the kinematics. The procedure isn't explicitly explained as this is
# similar to the simple pendulum. Also this is documented on the pydy.org
# website.
q1, q2 = dynamicsymbols('q1 q2')
q1d, q2d = dynamicsymbols('q1 q2', 1)
q1dd, q2dd = dynamicsymbols('q1 q2', 2)
u1, u2 = dynamicsymbols('u1 u2')
u1d, u2d = dynamicsymbols('u1 u2', 1)
l, m, g = symbols('l m g')
N = ReferenceFrame('N')
A = N.orientnew('A', 'Axis', [q1, N.z])
B = N.orientnew('B', 'Axis', [q2, N.z])
A.set_ang_vel(N, q1d * A.z)
B.set_ang_vel(N, q2d * A.z)
O = Point('O')
P = O.locatenew('P', l * A.x)
R = P.locatenew('R', l * B.x)
O.set_vel(N, 0)
P.v2pt_theory(O, N, A)
R.v2pt_theory(P, N, B)
ParP = Particle('ParP', P, m)
ParR = Particle('ParR', R, m)
ParP.potential_energy = - m * g * l * cos(q1)
ParR.potential_energy = - m * g * l * cos(q1) - m * g * l * cos(q2)
L = Lagrangian(N, ParP, ParR)
lm = LagrangesMethod(L, [q1, q2], bodies=[ParP, ParR])
lm.form_lagranges_equations()
assert simplify(l*m*(2*g*sin(q1) + l*sin(q1)*sin(q2)*q2dd
+ l*sin(q1)*cos(q2)*q2d**2 - l*sin(q2)*cos(q1)*q2d**2
+ l*cos(q1)*cos(q2)*q2dd + 2*l*q1dd) - lm.eom[0]) == 0
assert simplify(l*m*(g*sin(q2) + l*sin(q1)*sin(q2)*q1dd
- l*sin(q1)*cos(q2)*q1d**2 + l*sin(q2)*cos(q1)*q1d**2
+ l*cos(q1)*cos(q2)*q1dd + l*q2dd) - lm.eom[1]) == 0
assert lm.bodies == [ParP, ParR]
示例6: test_potential_energy
def test_potential_energy():
m, M, l1, g, h, H = symbols('m M l1 g h H')
omega = dynamicsymbols('omega')
N = ReferenceFrame('N')
O = Point('O')
O.set_vel(N, 0 * N.x)
Ac = O.locatenew('Ac', l1 * N.x)
P = Ac.locatenew('P', l1 * N.x)
a = ReferenceFrame('a')
a.set_ang_vel(N, omega * N.z)
Ac.v2pt_theory(O, N, a)
P.v2pt_theory(O, N, a)
Pa = Particle('Pa', P, m)
I = outer(N.z, N.z)
A = RigidBody('A', Ac, a, M, (I, Ac))
Pa.set_potential_energy(m * g * h)
A.set_potential_energy(M * g * H)
assert potential_energy(A, Pa) == m * g * h + M * g * H
示例7: test_potential_energy
def test_potential_energy():
m, M, l1, g, h, H = symbols("m M l1 g h H")
omega = dynamicsymbols("omega")
N = ReferenceFrame("N")
O = Point("O")
O.set_vel(N, 0 * N.x)
Ac = O.locatenew("Ac", l1 * N.x)
P = Ac.locatenew("P", l1 * N.x)
a = ReferenceFrame("a")
a.set_ang_vel(N, omega * N.z)
Ac.v2pt_theory(O, N, a)
P.v2pt_theory(O, N, a)
Pa = Particle("Pa", P, m)
I = outer(N.z, N.z)
A = RigidBody("A", Ac, a, M, (I, Ac))
Pa.potential_energy = m * g * h
A.potential_energy = M * g * H
assert potential_energy(A, Pa) == m * g * h + M * g * H
示例8: __init__
def __init__(self, name, masscenter=None, mass=None, frame=None,
central_inertia=None):
self.name = name
self.loads = []
if frame is None:
frame = ReferenceFrame(name + '_frame')
if masscenter is None:
masscenter = Point(name + '_masscenter')
if central_inertia is None and mass is None:
ixx = Symbol(name + '_ixx')
iyy = Symbol(name + '_iyy')
izz = Symbol(name + '_izz')
izx = Symbol(name + '_izx')
ixy = Symbol(name + '_ixy')
iyz = Symbol(name + '_iyz')
_inertia = (inertia(frame, ixx, iyy, izz, ixy, iyz, izx),
masscenter)
else:
_inertia = (central_inertia, masscenter)
if mass is None:
_mass = Symbol(name + '_mass')
else:
_mass = mass
masscenter.set_vel(frame, 0)
# If user passes masscenter and mass then a particle is created
# otherwise a rigidbody. As a result a body may or may not have inertia.
if central_inertia is None and mass is not None:
self.frame = frame
self.masscenter = masscenter
Particle.__init__(self, name, masscenter, _mass)
else:
RigidBody.__init__(self, name, masscenter, frame, _mass, _inertia)
示例9: test_simp_pen
def test_simp_pen():
# This tests that the equations generated by LagrangesMethod are identical
# to those obtained by hand calculations. The system under consideration is
# the simple pendulum.
# We begin by creating the generalized coordinates as per the requirements
# of LagrangesMethod. Also we created the associate symbols
# that characterize the system: 'm' is the mass of the bob, l is the length
# of the massless rigid rod connecting the bob to a point O fixed in the
# inertial frame.
q, u = dynamicsymbols('q u')
qd, ud = dynamicsymbols('q u ', 1)
l, m, g = symbols('l m g')
# We then create the inertial frame and a frame attached to the massless
# string following which we define the inertial angular velocity of the
# string.
N = ReferenceFrame('N')
A = N.orientnew('A', 'Axis', [q, N.z])
A.set_ang_vel(N, qd * N.z)
# Next, we create the point O and fix it in the inertial frame. We then
# locate the point P to which the bob is attached. Its corresponding
# velocity is then determined by the 'two point formula'.
O = Point('O')
O.set_vel(N, 0)
P = O.locatenew('P', l * A.x)
P.v2pt_theory(O, N, A)
# The 'Particle' which represents the bob is then created and its
# Lagrangian generated.
Pa = Particle('Pa', P, m)
Pa.set_potential_energy(- m * g * l * cos(q))
L = Lagrangian(N, Pa)
# The 'LagrangesMethod' class is invoked to obtain equations of motion.
lm = LagrangesMethod(L, [q])
lm.form_lagranges_equations()
RHS = lm.rhs()
assert RHS[1] == -g*sin(q)/l
示例10: test_lagrange_2forces
def test_lagrange_2forces():
### Equations for two damped springs in serie with two forces
### generalized coordinates
qs = q1, q2 = dynamicsymbols('q1, q2')
### generalized speeds
qds = q1d, q2d = dynamicsymbols('q1, q2', 1)
### Mass, spring strength, friction coefficient
m, k, nu = symbols('m, k, nu')
N = ReferenceFrame('N')
O = Point('O')
### Two points
P1 = O.locatenew('P1', q1 * N.x)
P1.set_vel(N, q1d * N.x)
P2 = O.locatenew('P1', q2 * N.x)
P2.set_vel(N, q2d * N.x)
pP1 = Particle('pP1', P1, m)
pP1.potential_energy = k * q1**2 / 2
pP2 = Particle('pP2', P2, m)
pP2.potential_energy = k * (q1 - q2)**2 / 2
#### Friction forces
forcelist = [(P1, - nu * q1d * N.x),
(P2, - nu * q2d * N.x)]
lag = Lagrangian(N, pP1, pP2)
l_method = LagrangesMethod(lag, (q1, q2), forcelist=forcelist, frame=N)
l_method.form_lagranges_equations()
eq1 = l_method.eom[0]
assert eq1.diff(q1d) == nu
eq2 = l_method.eom[1]
assert eq2.diff(q2d) == nu
示例11: test_two_dof
def test_two_dof():
# This is for a 2 d.o.f., 2 particle spring-mass-damper.
# The first coordinate is the displacement of the first particle, and the
# second is the relative displacement between the first and second
# particles. Speeds are defined as the time derivatives of the particles.
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
q1d, q2d, u1d, u2d = dynamicsymbols('q1 q2 u1 u2', 1)
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
N = ReferenceFrame('N')
P1 = Point('P1')
P2 = Point('P2')
P1.set_vel(N, u1 * N.x)
P2.set_vel(N, (u1 + u2) * N.x)
kd = [q1d - u1, q2d - u2]
# Now we create the list of forces, then assign properties to each
# particle, then create a list of all particles.
FL = [(P1, (-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2) * N.x), (P2, (-k2 *
q2 - c2 * u2) * N.x)]
pa1 = Particle()
pa2 = Particle()
pa1.mass = m
pa2.mass = m
pa1.point = P1
pa2.point = P2
BL = [pa1, pa2]
# Finally we create the Kane object, specify the inertial frame, pass
# relevant information, and form Fr & Fr*. Then we calculate the mass
# matrix and forcing terms, and finally solve for the udots.
KM = Kane(N)
KM.coords([q1, q2])
KM.speeds([u1, u2])
KM.kindiffeq(kd)
KM.kanes_equations(FL, BL)
MM = KM.mass_matrix
forcing = KM.forcing
rhs = MM.inv() * forcing
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
c2 * u2) / m)
示例12: test_particle
def test_particle():
m, m2, v1, v2, v3, r, g, h = symbols('m m2 v1 v2 v3 r g h')
P = Point('P')
P2 = Point('P2')
p = Particle('pa', P, m)
assert p.mass == m
assert p.point == P
# Test the mass setter
p.mass = m2
assert p.mass == m2
# Test the point setter
p.point = P2
assert p.point == P2
# Test the linear momentum function
N = ReferenceFrame('N')
O = Point('O')
P2.set_pos(O, r * N.y)
P2.set_vel(N, v1 * N.x)
assert p.linear_momentum(N) == m2 * v1 * N.x
assert p.angular_momentum(O, N) == -m2 * r *v1 * N.z
P2.set_vel(N, v2 * N.y)
assert p.linear_momentum(N) == m2 * v2 * N.y
assert p.angular_momentum(O, N) == 0
P2.set_vel(N, v3 * N.z)
assert p.linear_momentum(N) == m2 * v3 * N.z
assert p.angular_momentum(O, N) == m2 * r * v3 * N.x
P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z)
assert p.linear_momentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z)
assert p.angular_momentum(O, N) == m2 * r * (v3 * N.x - v1 * N.z)
p.set_potential_energy(m * g * h)
assert p.potential_energy == m * g * h
# TODO make the result not be system-dependent
assert p.kinetic_energy(
N) in [m2*(v1**2 + v2**2 + v3**2)/2,
m2 * v1**2 / 2 + m2 * v2**2 / 2 + m2 * v3**2 / 2]
示例13: symbols
m, g, l = symbols('m g l')
N = ReferenceFrame('N')
# part a
r1 = s*N.x
r2 = (s + l*cos(theta))*N.x + l*sin(theta)*N.y
O = Point('O')
p1 = O.locatenew('p1', r1)
p2 = O.locatenew('p2', r2)
O.set_vel(N, 0)
p1.set_vel(N, p1.pos_from(O).dt(N))
p2.set_vel(N, p2.pos_from(O).dt(N))
P1 = Particle('P1', p1, 2*m)
P2 = Particle('P2', p2, m)
P1.set_potential_energy(0)
P2.set_potential_energy(P2.mass * g * (p2.pos_from(O) & N.y))
L1 = Lagrangian(N, P1, P2)
print('{} = {}'.format('L1', msprint(L1)))
lm1 = LagrangesMethod(L1, [s, theta])
lm1.form_lagranges_equations()
rhs = lm1.rhs()
t = symbols('t')
print('{} = {}'.format(msprint(sd.diff(t)), msprint(rhs[2].simplify())))
print('{} = {}\n'.format(msprint(thetad.diff(t)), msprint(rhs[3].simplify())))
示例14: test_particle
def test_particle():
m, m2, v1, v2, v3, r = symbols('m m2 v1 v2 v3 r')
P = Point('P')
P2 = Point('P2')
p = Particle('pa', P, m)
assert p.mass == m
assert p.point == P
# Test the mass setter
p.mass = m2
assert p.mass == m2
# Test the point setter
p.point = P2
assert p.point == P2
# Test the linear momentum function
N = ReferenceFrame('N')
O = Point('O')
P2.set_pos(O, r * N.y)
P2.set_vel(N, v1 * N.x)
assert p.linearmomentum(N) == m2 * v1 * N.x
assert p.angularmomentum(O, N) == -m2 * r *v1 * N.z
P2.set_vel(N, v2 * N.y)
assert p.linearmomentum(N) == m2 * v2 * N.y
assert p.angularmomentum(O, N) == 0
P2.set_vel(N, v3 * N.z)
assert p.linearmomentum(N) == m2 * v3 * N.z
assert p.angularmomentum(O, N) == m2 * r * v3 * N.x
P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z)
assert p.linearmomentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z)
assert p.angularmomentum(O, N) == m2 * r * (v3 * N.x - v1 * N.z)
示例15: symbols
one_frame.ang_vel_in(inertial_frame)
two_frame.set_ang_vel(one_frame, omega2*inertial_frame.z)
two_frame.ang_vel_in(inertial_frame)
#Sets up the linear velocities of the points on the linkages
#one.set_vel(inertial_frame, 0)
two.v2pt_theory(one, inertial_frame, one_frame)
two.vel(inertial_frame)
three.v2pt_theory(two, inertial_frame, two_frame)
three.vel(inertial_frame)
#Sets up the masses of the linkages
one_mass, two_mass = symbols('m_1, m_2')
#Defines the linkages as particles
twoP = Particle('twoP', two, one_mass)
threeP = Particle('threeP', three, two_mass)
#Sets up gravity information and assigns gravity to act on mass centers
g = symbols('g')
two_grav_force_vector = -1*one_mass*g*inertial_frame.y
two_grav_force = (two, two_grav_force_vector)
three_grav_force_vector = -1*two_mass*g*inertial_frame.y
three_grav_force = (three, three_grav_force_vector)
#Sets up joint torques
one_torque, two_torque = dynamicsymbols('T_1, T_2')
one_torque_vector = one_torque*inertial_frame.z - two_torque*inertial_frame.z
one_link_torque = (one_frame, one_torque_vector)
two_torque_vector = two_torque*inertial_frame.z