本文整理匯總了Python中sympy.physics.mechanics.LagrangesMethod.linearize方法的典型用法代碼示例。如果您正苦於以下問題:Python LagrangesMethod.linearize方法的具體用法?Python LagrangesMethod.linearize怎麽用?Python LagrangesMethod.linearize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sympy.physics.mechanics.LagrangesMethod
的用法示例。
在下文中一共展示了LagrangesMethod.linearize方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_linearize_pendulum_lagrange_minimal
# 需要導入模塊: from sympy.physics.mechanics import LagrangesMethod [as 別名]
# 或者: from sympy.physics.mechanics.LagrangesMethod import linearize [as 別名]
def test_linearize_pendulum_lagrange_minimal():
q1 = dynamicsymbols('q1') # angle of pendulum
q1d = dynamicsymbols('q1', 1) # Angular velocity
L, m, t = symbols('L, m, t')
g = 9.8
# Compose world frame
N = ReferenceFrame('N')
pN = Point('N*')
pN.set_vel(N, 0)
# A.x is along the pendulum
A = N.orientnew('A', 'axis', [q1, N.z])
A.set_ang_vel(N, q1d*N.z)
# Locate point P relative to the origin N*
P = pN.locatenew('P', L*A.x)
P.v2pt_theory(pN, N, A)
pP = Particle('pP', P, m)
# Solve for eom with Lagranges method
Lag = Lagrangian(N, pP)
LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N)
LM.form_lagranges_equations()
# Linearize
A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True)
assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]])
assert B == Matrix([])
示例2: test_linearize_pendulum_lagrange_nonminimal
# 需要導入模塊: from sympy.physics.mechanics import LagrangesMethod [as 別名]
# 或者: from sympy.physics.mechanics.LagrangesMethod import linearize [as 別名]
def test_linearize_pendulum_lagrange_nonminimal():
q1, q2 = dynamicsymbols('q1:3')
q1d, q2d = dynamicsymbols('q1:3', level=1)
L, m, t = symbols('L, m, t')
g = 9.8
# Compose World Frame
N = ReferenceFrame('N')
pN = Point('N*')
pN.set_vel(N, 0)
# A.x is along the pendulum
theta1 = atan(q2/q1)
A = N.orientnew('A', 'axis', [theta1, N.z])
# Create point P, the pendulum mass
P = pN.locatenew('P1', q1*N.x + q2*N.y)
P.set_vel(N, P.pos_from(pN).dt(N))
pP = Particle('pP', P, m)
# Constraint Equations
f_c = Matrix([q1**2 + q2**2 - L**2])
# Calculate the lagrangian, and form the equations of motion
Lag = Lagrangian(N, pP)
LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N)
LM.form_lagranges_equations()
# Compose operating point
op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0}
# Solve for multiplier operating point
lam_op = LM.solve_multipliers(op_point=op_point)
op_point.update(lam_op)
# Perform the Linearization
A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d],
op_point=op_point, A_and_B=True)
assert A == Matrix([[0, 1], [-9.8/L, 0]])
assert B == Matrix([])
示例3: test_linearize_rolling_disc_lagrange
# 需要導入模塊: from sympy.physics.mechanics import LagrangesMethod [as 別名]
# 或者: from sympy.physics.mechanics.LagrangesMethod import linearize [as 別名]
def test_linearize_rolling_disc_lagrange():
q1, q2, q3 = q = dynamicsymbols("q1 q2 q3")
q1d, q2d, q3d = qd = dynamicsymbols("q1 q2 q3", 1)
r, m, g = symbols("r m g")
N = ReferenceFrame("N")
Y = N.orientnew("Y", "Axis", [q1, N.z])
L = Y.orientnew("L", "Axis", [q2, Y.x])
R = L.orientnew("R", "Axis", [q3, L.y])
C = Point("C")
C.set_vel(N, 0)
Dmc = C.locatenew("Dmc", r * L.z)
Dmc.v2pt_theory(C, N, R)
I = inertia(L, m / 4 * r ** 2, m / 2 * r ** 2, m / 4 * r ** 2)
BodyD = RigidBody("BodyD", Dmc, R, m, (I, Dmc))
BodyD.potential_energy = -m * g * r * cos(q2)
Lag = Lagrangian(N, BodyD)
l = LagrangesMethod(Lag, q)
l.form_lagranges_equations()
# Linearize about steady-state upright rolling
op_point = {q1: 0, q2: 0, q3: 0, q1d: 0, q2d: 0, q1d.diff(): 0, q2d.diff(): 0, q3d.diff(): 0}
A = l.linearize(q_ind=q, qd_ind=qd, op_point=op_point, A_and_B=True)[0]
sol = Matrix(
[
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, -6 * q3d, 0],
[0, -4 * g / (5 * r), 0, 6 * q3d / 5, 0, 0],
[0, 0, 0, 0, 0, 0],
]
)
assert A == sol