當前位置: 首頁>>代碼示例>>Python>>正文


Python galgebra.MV類代碼示例

本文整理匯總了Python中sympy.galgebra.MV的典型用法代碼示例。如果您正苦於以下問題:Python MV類的具體用法?Python MV怎麽用?Python MV使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了MV類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: basic_multivector_operations

def basic_multivector_operations():
    Print_Function()
    (ex, ey, ez) = MV.setup('e*x|y|z')

    A = MV('A', 'mv')

    A.Fmt(1, 'A')
    A.Fmt(2, 'A')
    A.Fmt(3, 'A')

    X = MV('X', 'vector')
    Y = MV('Y', 'vector')

    print('g_{ij} =\n', MV.metric)

    X.Fmt(1, 'X')
    Y.Fmt(1, 'Y')

    (X*Y).Fmt(2, 'X*Y')
    (X ^ Y).Fmt(2, 'X^Y')
    (X | Y).Fmt(2, 'X|Y')

    (ex, ey) = MV.setup('e*x|y')

    print('g_{ij} =\n', MV.metric)

    X = MV('X', 'vector')
    A = MV('A', 'spinor')

    X.Fmt(1, 'X')
    A.Fmt(1, 'A')

    (X | A).Fmt(2, 'X|A')
    (X < A).Fmt(2, 'X<A')
    (A > X).Fmt(2, 'A>X')

    (ex, ey) = MV.setup('e*x|y', metric='[1,1]')

    print('g_{ii} =\n', MV.metric)

    X = MV('X', 'vector')
    A = MV('A', 'spinor')

    X.Fmt(1, 'X')
    A.Fmt(1, 'A')

    (X*A).Fmt(2, 'X*A')
    (X | A).Fmt(2, 'X|A')
    (X < A).Fmt(2, 'X<A')
    (X > A).Fmt(2, 'X>A')

    (A*X).Fmt(2, 'A*X')
    (A | X).Fmt(2, 'A|X')
    (A < X).Fmt(2, 'A<X')
    (A > X).Fmt(2, 'A>X')
    return
開發者ID:AdrianPotter,項目名稱:sympy,代碼行數:56,代碼來源:terminal_check.py

示例2: basic_multivector_operations

def basic_multivector_operations():
    Print_Function()
    (ex, ey, ez) = MV.setup("e*x|y|z")

    A = MV("A", "mv")

    A.Fmt(1, "A")
    A.Fmt(2, "A")
    A.Fmt(3, "A")

    X = MV("X", "vector")
    Y = MV("Y", "vector")

    print("g_{ij} =\n", MV.metric)

    X.Fmt(1, "X")
    Y.Fmt(1, "Y")

    (X * Y).Fmt(2, "X*Y")
    (X ^ Y).Fmt(2, "X^Y")
    (X | Y).Fmt(2, "X|Y")

    (ex, ey) = MV.setup("e*x|y")

    print("g_{ij} =\n", MV.metric)

    X = MV("X", "vector")
    A = MV("A", "spinor")

    X.Fmt(1, "X")
    A.Fmt(1, "A")

    (X | A).Fmt(2, "X|A")
    (X < A).Fmt(2, "X<A")
    (A > X).Fmt(2, "A>X")

    (ex, ey) = MV.setup("e*x|y", metric="[1,1]")

    print("g_{ii} =\n", MV.metric)

    X = MV("X", "vector")
    A = MV("A", "spinor")

    X.Fmt(1, "X")
    A.Fmt(1, "A")

    (X * A).Fmt(2, "X*A")
    (X | A).Fmt(2, "X|A")
    (X < A).Fmt(2, "X<A")
    (X > A).Fmt(2, "X>A")

    (A * X).Fmt(2, "A*X")
    (A | X).Fmt(2, "A|X")
    (A < X).Fmt(2, "A<X")
    (A > X).Fmt(2, "A>X")
    return
開發者ID:aterrel,項目名稱:sympy,代碼行數:56,代碼來源:terminal_check.py

示例3: extracting_vectors_from_conformal_2_blade

def extracting_vectors_from_conformal_2_blade():
    Print_Function()
    print(r'B = P1\W P2')

    metric = ' 0 -1 #,' + \
             '-1  0 #,' + \
             ' #  # #,'

    (P1, P2, a) = MV.setup('P1 P2 a', metric)

    print('g_{ij} =', MV.metric)

    B = P1 ^ P2
    Bsq = B*B
    print('%B^{2} =', Bsq)
    ap = a - (a ^ B)*B
    print("a' = a-(a^B)*B =", ap)

    Ap = ap + ap*B
    Am = ap - ap*B

    print("A+ = a'+a'*B =", Ap)
    print("A- = a'-a'*B =", Am)

    print('%(A+)^{2} =', Ap*Ap)
    print('%(A-)^{2} =', Am*Am)

    aB = a | B
    print('a|B =', aB)
    return
開發者ID:AdrianPotter,項目名稱:sympy,代碼行數:30,代碼來源:latex_check.py

示例4: derivatives_in_spherical_coordinates

def derivatives_in_spherical_coordinates():
    Print_Function()

    X = (r, th, phi) = symbols('r theta phi')
    curv = [[r *
             cos(phi) *
             sin(th), r *
             sin(phi) *
             sin(th), r *
             cos(th)], [1, r, r *
                        sin(th)]]
    (er,
     eth,
     ephi,
     grad) = MV.setup('e_r e_theta e_phi',
                      metric='[1,1,1]',
                      coords=X,
                      curv=curv)

    f = MV('f', 'scalar', fct=True)
    A = MV('A', 'vector', fct=True)
    B = MV('B', 'grade2', fct=True)

    print('f =', f)
    print('A =', A)
    print('B =', B)

    print('grad*f =', grad*f)
    print('grad|A =', grad | A)
    print('-I*(grad^A) =', -MV.I*(grad ^ A))
    print('grad^B =', grad ^ B)
    return
開發者ID:AdrianPotter,項目名稱:sympy,代碼行數:32,代碼來源:terminal_check.py

示例5: Simple_manifold_with_scalar_function_derivative

def Simple_manifold_with_scalar_function_derivative():
    Print_Function()
    coords = (x, y, z) = symbols('x y z')
    basis = (e1, e2, e3, grad) = MV.setup('e_1 e_2 e_3', metric='[1,1,1]', coords=coords)
    # Define surface
    mfvar = (u, v) = symbols('u v')
    X = u*e1 + v*e2 + (u**2 + v**2)*e3
    print('\\f{X}{u,v} =', X)
    MF = Manifold(X, mfvar)
    (eu, ev) = MF.Basis()
    # Define field on the surface.
    g = (v + 1)*log(u)

    print('\\f{g}{u,v} =', g)

    # Method 1: Using old Manifold routines.
    VectorDerivative = (MF.rbasis[0]/MF.E_sq)*diff(g, u) + (MF.rbasis[1]/MF.E_sq)*diff(g, v)
    print('\\eval{\\nabla g}{u=1,v=0} =', VectorDerivative.subs({u: 1, v: 0}))

    # Method 2: Using new Manifold routines.
    dg = MF.Grad(g)
    print('\\eval{\\f{Grad}{g}}{u=1,v=0} =', dg.subs({u: 1, v: 0}))
    dg = MF.grad*g
    print('\\eval{\\nabla g}{u=1,v=0} =', dg.subs({u: 1, v: 0}))
    return
開發者ID:AALEKH,項目名稱:sympy,代碼行數:25,代碼來源:manifold_check_latex.py

示例6: Distorted_manifold_with_scalar_function

def Distorted_manifold_with_scalar_function():
    Print_Function()
    coords = symbols('x y z')
    (ex, ey, ez, grad) = MV.setup('e_x e_y e_z', metric='[1,1,1]', coords=coords)
    mfvar = (u, v) = symbols('u v')
    X = 2*u*ex + 2*v*ey + (u**3 + v**3/2)*ez
    MF = Manifold(X, mfvar, I=MV.I)

    (eu, ev) = MF.Basis()

    g = (v + 1)*log(u)
    dg = MF.Grad(g)
    print('g =', g)
    print('dg =', dg)
    print('\\eval{dg}{u=1,v=0} =', dg.subs({u: 1, v: 0}))
    G = u*eu + v*ev
    dG = MF.Grad(G)
    print('G =', G)
    print('P(G) =', MF.Proj(G))
    print('dG =', dG)
    print('P(dG) =', MF.Proj(dG))
    PS = u*v*eu ^ ev
    print('P(S) =', PS)
    print('dP(S) =', MF.Grad(PS))
    print('P(dP(S)) =', MF.Proj(MF.Grad(PS)))
    return
開發者ID:AALEKH,項目名稱:sympy,代碼行數:26,代碼來源:manifold_check_latex.py

示例7: Simple_manifold_with_vector_function_derivative

def Simple_manifold_with_vector_function_derivative():
    Print_Function()
    coords = (x, y, z) = symbols('x y z')
    basis = (ex, ey, ez, grad) = \
            MV.setup('e_x e_y e_z', metric='[1,1,1]', coords=coords)
    # Define surface
    mfvar = (u, v) = symbols('u v')
    X = u*ex + v*ey + (u**2 + v**2)*ez
    print('\\f{X}{u,v} =', X)
    MF = Manifold(X, mfvar)
    (eu, ev) = MF.Basis()

    # Define field on the surface.
    g = (v + 1)*log(u)

    print('\\mbox{Scalar Function: } g =', g)
    dg = MF.grad*g
    dg.Fmt(3, '\\mbox{Scalar Function Derivative: } \\nabla g')
    print('\\eval{\\nabla g}{(1,0)} =', dg.subs({u: 1, v: 0}))

    # Define vector field on the surface

    G = v**2*eu + u**2*ev
    print('\\mbox{Vector Function: } G =', G)
    dG = MF.grad*G
    dG.Fmt(3, '\\mbox{Vector Function Derivative: } \\nabla G')
    print('\\eval{\\nabla G}{(1,0)} =', dG.subs({u: 1, v: 0}))

    return
開發者ID:AALEKH,項目名稱:sympy,代碼行數:29,代碼來源:manifold_check_latex.py

示例8: Test_Reciprocal_Frame

def Test_Reciprocal_Frame():
    Print_Function()
    Format()
    coords = symbols('x y z')
    (ex, ey, ez, grad) = MV.setup('e_x e_y e_z', metric='[1,1,1]', coords=coords)

    mfvar = (u, v) = symbols('u v')

    eu = ex + ey
    ev = ex - ey

    (eu_r, ev_r) = ReciprocalFrame([eu, ev])

    oprint('\\mbox{Frame}', (eu, ev), '\\mbox{Reciprocal Frame}', (eu_r, ev_r))

    print(r'%\bm{e}_{u}\cdot\bm{e}^{u} =', (eu | eu_r))
    print(r'%\bm{e}_{u}\cdot\bm{e}^{v} =', eu | ev_r)
    print(r'%\bm{e}_{v}\cdot\bm{e}^{u} =', ev | eu_r)
    print(r'%\bm{e}_{v}\cdot\bm{e}^{v} =', ev | ev_r)

    eu = ex + ey + ez
    ev = ex - ey

    (eu_r, ev_r) = ReciprocalFrame([eu, ev])

    oprint('\\mbox{Frame}', (eu, ev), '\\mbox{Reciprocal Frame}', (eu_r, ev_r))

    print(r'%\bm{e}_{u}\cdot\bm{e}^{u} =', eu | eu_r)
    print(r'%\bm{e}_{u}\cdot\bm{e}^{v} =', eu | ev_r)
    print(r'%\bm{e}_{v}\cdot\bm{e}^{u} =', ev | eu_r)
    print(r'%\bm{e}_{v}\cdot\bm{e}^{v} =', ev | ev_r)
    return
開發者ID:AALEKH,項目名稱:sympy,代碼行數:32,代碼來源:manifold_check_latex.py

示例9: check_generalized_BAC_CAB_formulas

def check_generalized_BAC_CAB_formulas():
    Print_Function()

    (a, b, c, d, e) = MV.setup('a b c d e')

    print('g_{ij} =\n', MV.metric)

    print('a|(b*c) =', a | (b*c))
    print('a|(b^c) =', a | (b ^ c))
    print('a|(b^c^d) =', a | (b ^ c ^ d))
    print('a|(b^c)+c|(a^b)+b|(c^a) =', (a | (b ^ c)) +
          (c | (a ^ b)) +
          (b | (c ^ a)))
    print('a*(b^c)-b*(a^c)+c*(a^b) =', a*(b ^ c) - b*(a ^ c) + c*(a ^ b))
    print('a*(b^c^d)-b*(a^c^d)+c*(a^b^d)-d*(a^b^c) =', a *
          (b ^ c ^ d) -
          b *
          (a ^ c ^ d) +
          c *
          (a ^ b ^ d) -
          d *
          (a ^ b ^ c))
    print('(a^b)|(c^d) =', (a ^ b) | (c ^ d))
    print('((a^b)|c)|d =', ((a ^ b) | c) | d)
    print('(a^b)x(c^d) =', Com(a ^ b, c ^ d))
    print('(a|(b^c))|(d^e) =', (a | (b ^ c)) | (d ^ e))

    return
開發者ID:AdrianPotter,項目名稱:sympy,代碼行數:28,代碼來源:terminal_check.py

示例10: derivatives_in_rectangular_coordinates

def derivatives_in_rectangular_coordinates():
    Print_Function()

    X = (x, y, z) = symbols('x y z')
    (ex, ey, ez, grad) = MV.setup('e_x e_y e_z', metric='[1,1,1]', coords=X)

    f = MV('f', 'scalar', fct=True)
    A = MV('A', 'vector', fct=True)
    B = MV('B', 'grade2', fct=True)
    C = MV('C', 'mv', fct=True)
    print('f =', f)
    print('A =', A)
    print('B =', B)
    print('C =', C)

    print('grad*f =', grad*f)
    print('grad|A =', grad | A)
    print('grad*A =', grad*A)

    print('-I*(grad^A) =', -MV.I*(grad ^ A))
    print('grad*B =', grad*B)
    print('grad^B =', grad ^ B)
    print('grad|B =', grad | B)

    print('grad<A =', grad < A)
    print('grad>A =', grad > A)
    print('grad<B =', grad < B)
    print('grad>B =', grad > B)
    print('grad<C =', grad < C)
    print('grad>C =', grad > C)

    return
開發者ID:AdrianPotter,項目名稱:sympy,代碼行數:32,代碼來源:terminal_check.py

示例11: Lorentz_Tranformation_in_Geometric_Algebra

def Lorentz_Tranformation_in_Geometric_Algebra():
    Print_Function()
    (alpha, beta, gamma) = symbols('alpha beta gamma')
    (x, t, xp, tp) = symbols("x t x' t'")
    (g0, g1) = MV.setup('gamma*t|x', metric='[1,-1]')

    from sympy import sinh, cosh

    R = cosh(alpha/2) + sinh(alpha/2)*(g0 ^ g1)
    X = t*g0 + x*g1
    Xp = tp*g0 + xp*g1
    print('R =', R)

    print(r"#%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} = t'\bm{\gamma'_{t}}+x'\bm{\gamma'_{x}} = R\lp t'\bm{\gamma_{t}}+x'\bm{\gamma_{x}}\rp R^{\dagger}")

    Xpp = R*Xp*R.rev()
    Xpp = Xpp.collect([xp, tp])
    Xpp = Xpp.subs({2*sinh(alpha/2)*cosh(alpha/2): sinh(alpha), sinh(alpha/2)**2 + cosh(alpha/2)**2: cosh(alpha)})
    print(r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =", Xpp)
    Xpp = Xpp.subs({sinh(alpha): gamma*beta, cosh(alpha): gamma})

    print(r'%\f{\sinh}{\alpha} = \gamma\beta')
    print(r'%\f{\cosh}{\alpha} = \gamma')

    print(r"%t\bm{\gamma_{t}}+x\bm{\gamma_{x}} =", Xpp.collect(gamma))
    return
開發者ID:AALEKH,項目名稱:sympy,代碼行數:26,代碼來源:physics_check_latex.py

示例12: properties_of_geometric_objects

def properties_of_geometric_objects():
    Print_Function()

    metric = "# # # 0 0," + "# # # 0 0," + "# # # 0 0," + "0 0 0 0 2," + "0 0 0 2 0"

    (p1, p2, p3, n, nbar) = MV.setup("p1 p2 p3 n nbar", metric)

    print("g_{ij} =\n", MV.metric)

    P1 = F(p1)
    P2 = F(p2)
    P3 = F(p3)

    print("Extracting direction of line from L = P1^P2^n")

    L = P1 ^ P2 ^ n
    delta = (L | n) | nbar
    print("(L|n)|nbar =", delta)

    print("Extracting plane of circle from C = P1^P2^P3")

    C = P1 ^ P2 ^ P3
    delta = ((C ^ n) | n) | nbar
    print("((C^n)|n)|nbar =", delta)
    print("(p2-p1)^(p3-p1) =", (p2 - p1) ^ (p3 - p1))
開發者ID:aterrel,項目名稱:sympy,代碼行數:25,代碼來源:terminal_check.py

示例13: main

def main():
    enhance_print()

    X = (x, y, z) = symbols('x y z')
    (ex, ey, ez, grad) = MV.setup('e_x e_y e_z', metric='[1,1,1]', coords=(x, y, z))

    A = x*(ey ^ ez) + y*(ez ^ ex) + z*(ex ^ ey)
    print('A =', A)
    print('grad^A =', (grad ^ A).simplify())
    print()

    f = MV('f', 'scalar', fct=True)
    f = (x**2 + y**2 + z**2)**(-1.5)
    print('f =', f)
    print('grad*f =', (grad*f).expand())
    print()

    B = f*A
    print('B =', B)
    print()

    Curl_B = grad ^ B

    print('grad^B =', Curl_B.simplify())

    def Symplify(A):
        return(factor_terms(simplify(A)))

    print(Curl_B.func(Symplify))
    return
開發者ID:AALEKH,項目名稱:sympy,代碼行數:30,代碼來源:prob_not_solenoidal.py

示例14: extracting_vectors_from_conformal_2_blade

def extracting_vectors_from_conformal_2_blade():
    Print_Function()

    metric = " 0 -1 #," + "-1  0 #," + " #  # #,"

    (P1, P2, a) = MV.setup("P1 P2 a", metric)

    print("g_{ij} =\n", MV.metric)

    B = P1 ^ P2
    Bsq = B * B
    print("B**2 =", Bsq)
    ap = a - (a ^ B) * B
    print("a' = a-(a^B)*B =", ap)

    Ap = ap + ap * B
    Am = ap - ap * B

    print("A+ = a'+a'*B =", Ap)
    print("A- = a'-a'*B =", Am)

    print("(A+)^2 =", Ap * Ap)
    print("(A-)^2 =", Am * Am)

    aB = a | B
    print("a|B =", aB)
    return
開發者ID:aterrel,項目名稱:sympy,代碼行數:27,代碼來源:terminal_check.py

示例15: derivatives_in_rectangular_coordinates

def derivatives_in_rectangular_coordinates():
    Print_Function()

    X = (x, y, z) = symbols("x y z")
    (ex, ey, ez, grad) = MV.setup("e_x e_y e_z", metric="[1,1,1]", coords=X)

    f = MV("f", "scalar", fct=True)
    A = MV("A", "vector", fct=True)
    B = MV("B", "grade2", fct=True)
    C = MV("C", "mv", fct=True)
    print("f =", f)
    print("A =", A)
    print("B =", B)
    print("C =", C)

    print("grad*f =", grad * f)
    print("grad|A =", grad | A)
    print("grad*A =", grad * A)

    print("-I*(grad^A) =", -MV.I * (grad ^ A))
    print("grad*B =", grad * B)
    print("grad^B =", grad ^ B)
    print("grad|B =", grad | B)

    print("grad<A =", grad < A)
    print("grad>A =", grad > A)
    print("grad<B =", grad < B)
    print("grad>B =", grad > B)
    print("grad<C =", grad < C)
    print("grad>C =", grad > C)

    return
開發者ID:aterrel,項目名稱:sympy,代碼行數:32,代碼來源:terminal_check.py


注:本文中的sympy.galgebra.MV類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。