本文整理匯總了Python中sympy.concrete.expr_with_limits.AddWithLimits.__new__方法的典型用法代碼示例。如果您正苦於以下問題:Python AddWithLimits.__new__方法的具體用法?Python AddWithLimits.__new__怎麽用?Python AddWithLimits.__new__使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sympy.concrete.expr_with_limits.AddWithLimits
的用法示例。
在下文中一共展示了AddWithLimits.__new__方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __new__
# 需要導入模塊: from sympy.concrete.expr_with_limits import AddWithLimits [as 別名]
# 或者: from sympy.concrete.expr_with_limits.AddWithLimits import __new__ [as 別名]
def __new__(cls, function, *symbols, **assumptions):
obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions)
if not hasattr(obj, 'limits'):
return obj
if any(len(l) != 3 or None in l for l in obj.limits):
raise ValueError('Sum requires values for lower and upper bounds.')
return obj
示例2: __new__
# 需要導入模塊: from sympy.concrete.expr_with_limits import AddWithLimits [as 別名]
# 或者: from sympy.concrete.expr_with_limits.AddWithLimits import __new__ [as 別名]
def __new__(cls, function, *symbols, **assumptions):
"""Create an unevaluated integral.
Arguments are an integrand followed by one or more limits.
If no limits are given and there is only one free symbol in the
expression, that symbol will be used, otherwise an error will be
raised.
>>> from sympy import Integral
>>> from sympy.abc import x, y
>>> Integral(x)
Integral(x, x)
>>> Integral(y)
Integral(y, y)
When limits are provided, they are interpreted as follows (using
``x`` as though it were the variable of integration):
(x,) or x - indefinite integral
(x, a) - "evaluate at" integral is an abstract antiderivative
(x, a, b) - definite integral
The ``as_dummy`` method can be used to see which symbols cannot be
targeted by subs: those with a preppended underscore cannot be
changed with ``subs``. (Also, the integration variables themselves --
the first element of a limit -- can never be changed by subs.)
>>> i = Integral(x, x)
>>> at = Integral(x, (x, x))
>>> i.as_dummy()
Integral(x, x)
>>> at.as_dummy()
Integral(_x, (_x, x))
"""
#This will help other classes define their own definitions
#of behaviour with Integral.
if hasattr(function, '_eval_Integral'):
return function._eval_Integral(*symbols, **assumptions)
obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions)
return obj