本文整理匯總了Python中sunpy.map.Map.data方法的典型用法代碼示例。如果您正苦於以下問題:Python Map.data方法的具體用法?Python Map.data怎麽用?Python Map.data使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sunpy.map.Map
的用法示例。
在下文中一共展示了Map.data方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: calculate_em
# 需要導入模塊: from sunpy.map import Map [as 別名]
# 或者: from sunpy.map.Map import data [as 別名]
def calculate_em(self, wlen='171', dz=100, model=False):
"""
Calculate an approximation of the coronal EmissionMeasure using a given
TemperatureMap object and a particular AIA channel.
Parameters
----------
tmap : CoronaTemps.temperature.TemperatureMap
A TemperatureMap instance containing coronal temperature data
wlen : {'94' | '131' | '171' | '193' | '211' | '335'}
AIA wavelength used to approximate the emission measure. '171', '193'
and '211' are most likely to provide reliable results. Use of other
channels is not recommended.
"""
# Load the appropriate temperature response function
tresp = read('/imaps/holly/home/ajl7/CoronaTemps/aia_tresp')
resp = tresp['resp{}'.format(wlen)]
# Get some information from the TemperatureMap and set up filenames, etc
tempdata = self.data.copy()
tempdata[np.isnan(tempdata)] = 0.0
date = sunpy.time.parse_time(self.date)
if not model:
data_dir = self.data_dir
fits_dir = path.join(data_dir, '{:%Y/%m/%d}/{}'.format(date, wlen))
filename = path.join(fits_dir,
'*{0:%Y?%m?%d}?{0:%H?%M}*fits'.format(date))
if wlen == '94': filename = filename.replace('94', '094')
# Load and appropriately process AIA data
filelist = glob.glob(filename)
if filelist == []:
print 'AIA data not found :('
return
aiamap = Map(filename)
aiamap.data /= aiamap.exposure_time
aiamap = aiaprep(aiamap)
aiamap = aiamap.submap(self.xrange, self.yrange)
else:
fname = '/imaps/holly/home/ajl7/CoronaTemps/data/synthetic/{}/model.fits'.format(wlen)
if wlen == '94': fname = fname.replace('94', '094')
aiamap = Map(fname)
# Create new Map and put EM values in it
emmap = Map(self.data.copy(), self.meta.copy())
indices = np.round((tempdata - 4.0) / 0.05).astype(int)
indices[indices < 0] = 0
indices[indices > 100] = 100
#print emmap.shape, indices.shape, tempdata.shape, aiamap.shape, resp.shape
emmap.data = np.log10(aiamap.data / resp[indices])
#emmap.data = aiamap.data / resp[indices]
emmapcubehelix = _cm.cubehelix(s=2.8, r=-0.7, h=1.4, gamma=1.0)
cm.register_cmap(name='emhelix', data=emmapcubehelix)
emmap.cmap = cm.get_cmap('emhelix')
return emmap
示例2: create_tempmap
# 需要導入模塊: from sunpy.map import Map [as 別名]
# 或者: from sunpy.map.Map import data [as 別名]
def create_tempmap(date, n_params=1, data_dir=home+'SDO_data/',
maps_dir=home+'temperature_maps/'):
wlens = ['94', '131', '171', '193', '211', '335']
t0 = 5.6
images = []
#imdates = {}
print 'Finding data for {}.'.format(date.date())
# Loop through wavelengths
for wl, wlen in enumerate(wlens):
#print 'Finding {}A data...'.format(wlen),
fits_dir = data_dir + '{}/{:%Y/%m/%d}/'.format(wlen, date)
filename = fits_dir + 'aia*{0}*{1:%Y?%m?%d}?{1:%H?%M}*lev1?fits'.format(wlen, date)
temp_im = Map(filename)
# Download data if not enough found
client = vso.VSOClient()
if temp_im == []:
print 'File not found. Downloading from VSO...'
# Wavelength value for query needs to be an astropy Quantity
wquant = u.Quantity(value=int(wlen), unit='Angstrom')
qr = client.query(vso.attrs.Time(date,# - dt.timedelta(seconds=6),
date + dt.timedelta(seconds=12)),#6)),
vso.attrs.Wave(wquant, wquant),
vso.attrs.Instrument('aia'),
vso.attrs.Provider('JSOC'))
res = client.get(qr, path=fits_dir+'{file}', site='NSO').wait()
temp_im = Map(res)
if temp_im == []:
print 'Downloading failed.'
print res, len(qr), qr
return np.zeros((512, 512)), None, None
if isinstance(temp_im, list):
temp_im = temp_im[0]
# TODO: save out level 1.5 data so it can be loaded quickly.
temp_im = aiaprep(temp_im)
temp_im.data = temp_im.data / temp_im.exposure_time # Can probably increase speed a bit by making this * (1.0/exp_time)
images.append(temp_im)
#imdates[wlen] = temp_im.date
normim = images[2].data.copy()
# Normalise images to 171A
print 'Normalising images'
for i in range(len(wlens)):
images[i].data = images[i].data / normim
# Produce temperature map
if n_params == 1:
tempmap = find_temp(images, t0)#, force_temp_scan=True)
else:
#tempmap = find_temp_3params(images, t0)
pass
return tempmap
示例3: Map
# 需要導入模塊: from sunpy.map import Map [as 別名]
# 或者: from sunpy.map.Map import data [as 別名]
plt.axvline(35.0, color='white')
plt.axhline(5.6, color='white')
plt.axhline(7.0, color='white')
#plt.savefig(path.join(outdir, 'tempsolutions_em={}'.format(np.log10(wid)).replace('.', '_')))
plt.savefig(path.join(outdir, 'tempsolutions_wid={:.3f}'.format(wid).replace('.', '_')))
plt.close()
if n_pars == 3:
emdata = Map(newmap.emission_measure, newmap.meta.copy())
else:
if emwlen == 'three':
total = np.zeros(newmap.shape)
for w in ['171', '193', '211']:
emdata = newmap.calculate_em(w, model=True)
total += emdata.data
emdata.data = total/3.0
elif emwlen == 'all':
total = np.zeros(newmap.shape)
for w in ['94', '131', '171', '193', '211', '335']:
emdata = newmap.calculate_em(w, model=True)
total += emdata.data
emdata.data = total/6.0
else:
emdata = newmap.calculate_em(emwlen, model=True)
trueem = np.array(list(heights)*n_temps).reshape(n_temps, n_heights)
diffem = Map((abs(trueem - emdata.data) / trueem) * 100, newmap.meta.copy())
#print wid, emdata.xrange, emdata.yrange, emdata.scale
#print wid, diffem.xrange, diffem.yrange, diffem.scale
#print wid, fitsmap.xrange, fitsmap.yrange, fitsmap.scale
fig = plt.figure(figsize=(24, 12))
ax = fig.add_subplot(1, 3, 1)