當前位置: 首頁>>代碼示例>>Python>>正文


Python VAR.fit方法代碼示例

本文整理匯總了Python中statsmodels.tsa.vector_ar.var_model.VAR.fit方法的典型用法代碼示例。如果您正苦於以下問題:Python VAR.fit方法的具體用法?Python VAR.fit怎麽用?Python VAR.fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在statsmodels.tsa.vector_ar.var_model.VAR的用法示例。


在下文中一共展示了VAR.fit方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_results_statsmodels

# 需要導入模塊: from statsmodels.tsa.vector_ar.var_model import VAR [as 別名]
# 或者: from statsmodels.tsa.vector_ar.var_model.VAR import fit [as 別名]
def load_results_statsmodels(dataset):
    results_per_deterministic_terms = dict.fromkeys(dt_s_list)
    for dt_s_tup in dt_s_list:
        endog = data[dataset]
        exog = generate_exog_from_season(dt_s_tup[1], len(endog))
        model = VAR(endog, exog)
        results_per_deterministic_terms[dt_s_tup] = model.fit(
                maxlags=4, trend=dt_s_tup[0], method="ols")
    return results_per_deterministic_terms
開發者ID:ChadFulton,項目名稱:statsmodels,代碼行數:11,代碼來源:test_var_jmulti.py

示例2: TestVARResultsLutkepohl

# 需要導入模塊: from statsmodels.tsa.vector_ar.var_model import VAR [as 別名]
# 或者: from statsmodels.tsa.vector_ar.var_model.VAR import fit [as 別名]
class TestVARResultsLutkepohl(object):
    """
    Verify calculations using results from Lutkepohl's book
    """

    def __init__(self):
        self.p = 2

        if not have_pandas():
            return

        sdata, dates = get_lutkepohl_data("e1")

        names = sdata.dtype.names
        data = data_util.struct_to_ndarray(sdata)
        adj_data = np.diff(np.log(data), axis=0)
        # est = VAR(adj_data, p=2, dates=dates[1:], names=names)

        self.model = VAR(adj_data[:-16], dates=dates[1:-16], names=names, freq="Q")
        self.res = self.model.fit(maxlags=self.p)
        self.irf = self.res.irf(10)
        self.lut = E1_Results()

    def test_approx_mse(self):
        if not have_pandas():
            raise nose.SkipTest

        # 3.5.18, p. 99
        mse2 = np.array([[25.12, 0.580, 1.300], [0.580, 1.581, 0.586], [1.300, 0.586, 1.009]]) * 1e-4

        assert_almost_equal(mse2, self.res.forecast_cov(3)[1], DECIMAL_3)

    def test_irf_stderr(self):
        if not have_pandas():
            raise nose.SkipTest

        irf_stderr = self.irf.stderr(orth=False)
        for i in range(1, 1 + len(self.lut.irf_stderr)):
            assert_almost_equal(np.round(irf_stderr[i], 3), self.lut.irf_stderr[i - 1])

    def test_cum_irf_stderr(self):
        if not have_pandas():
            raise nose.SkipTest

        stderr = self.irf.cum_effect_stderr(orth=False)
        for i in range(1, 1 + len(self.lut.cum_irf_stderr)):
            assert_almost_equal(np.round(stderr[i], 3), self.lut.cum_irf_stderr[i - 1])

    def test_lr_effect_stderr(self):
        if not have_pandas():
            raise nose.SkipTest

        stderr = self.irf.lr_effect_stderr(orth=False)
        orth_stderr = self.irf.lr_effect_stderr(orth=True)
        assert_almost_equal(np.round(stderr, 3), self.lut.lr_stderr)
開發者ID:slojo404,項目名稱:statsmodels,代碼行數:57,代碼來源:test_var.py

示例3: test_var_constant

# 需要導入模塊: from statsmodels.tsa.vector_ar.var_model import VAR [as 別名]
# 或者: from statsmodels.tsa.vector_ar.var_model.VAR import fit [as 別名]
def test_var_constant():
    # see 2043
    import datetime
    from pandas import DataFrame, DatetimeIndex

    series = np.array([[2., 2.], [1, 2.], [1, 2.], [1, 2.], [1., 2.]])
    data = DataFrame(series)

    d = datetime.datetime.now()
    delta = datetime.timedelta(days=1)
    index = []
    for i in range(data.shape[0]):
        index.append(d)
        d += delta

    data.index = DatetimeIndex(index)

    model = VAR(data)
    with pytest.raises(ValueError):
        model.fit(1)
開發者ID:lbybee,項目名稱:statsmodels,代碼行數:22,代碼來源:test_var.py

示例4: vars_test

# 需要導入模塊: from statsmodels.tsa.vector_ar.var_model import VAR [as 別名]
# 或者: from statsmodels.tsa.vector_ar.var_model.VAR import fit [as 別名]
def vars_test():
    dt = get_dataframe()
    name_list = ["date", "tBalance_all", "total_purchase", "total_redeem", "total_diff"]
    # print(dt["total_purchase"])
    time = dt["date"]
    mdata = dt[["tBalance_all", "total_purchase", "total_redeem"]]
    mdata.index = pandas.DatetimeIndex(time)
    data = np.log(mdata).diff().dropna()
    model = VAR(data)
    results = model.fit(2)
    results.summary()

    results.plot()
開發者ID:744996162,項目名稱:ali_match,代碼行數:15,代碼來源:vars.py

示例5: test_var_constant

# 需要導入模塊: from statsmodels.tsa.vector_ar.var_model import VAR [as 別名]
# 或者: from statsmodels.tsa.vector_ar.var_model.VAR import fit [as 別名]
def test_var_constant():
    # see 2043
    import datetime
    from pandas import DataFrame, DatetimeIndex

    series = np.array([[2., 2.], [1, 2.], [1, 2.], [1, 2.], [1., 2.]])
    data = DataFrame(series)

    d = datetime.datetime.now()
    delta = datetime.timedelta(days=1)
    index = []
    for i in range(data.shape[0]):
        index.append(d)
        d += delta

    data.index = DatetimeIndex(index)

    #with pytest.warns(ValueWarning):  #does not silence warning in test output
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", category=ValueWarning)
        model = VAR(data)
    with pytest.raises(ValueError):
        model.fit(1)
開發者ID:N-Wouda,項目名稱:statsmodels,代碼行數:25,代碼來源:test_var.py

示例6: test2

# 需要導入模塊: from statsmodels.tsa.vector_ar.var_model import VAR [as 別名]
# 或者: from statsmodels.tsa.vector_ar.var_model.VAR import fit [as 別名]
def test2():
    mdata = statsmodels.datasets.macrodata.load_pandas().data
    dates = mdata[["year", "quarter"]].astype(int).astype(str)
    quarterly = dates["year"] + "Q" + dates["quarter"]

    mdata = mdata[["realgdp", "realcons", "realinv"]]
    mdata.index = pandas.DatetimeIndex(quarterly)
    data = np.log(mdata).diff().dropna()

    model = VAR(data)
    results = model.fit(2)
    results.summary()
    results = model.fit(maxlags=50, ic="aic")
    # print(results.summary())

    lag_order = results.k_ar
    print results.forecast(data.values[-lag_order:], 30)
    # print(results)
    # print model.select_order(15)

    # results.plot()
    # results.plot_acorr()

    pass
開發者ID:744996162,項目名稱:ali_match,代碼行數:26,代碼來源:vars.py

示例7: test_constructor

# 需要導入模塊: from statsmodels.tsa.vector_ar.var_model import VAR [as 別名]
# 或者: from statsmodels.tsa.vector_ar.var_model.VAR import fit [as 別名]
 def test_constructor(self):
     # make sure this works with no names
     ndarr = self.data.view((float, 3))
     model = VAR(ndarr)
     res = model.fit(self.p)
開發者ID:Wombatpm,項目名稱:statsmodels,代碼行數:7,代碼來源:test_var.py

示例8: dates_from_str

# 需要導入模塊: from statsmodels.tsa.vector_ar.var_model import VAR [as 別名]
# 或者: from statsmodels.tsa.vector_ar.var_model.VAR import fit [as 別名]
import pandas as pd
import numpy as np
import statsmodels.api as sm
import pylab
from statsmodels.tsa.base.datetools import dates_from_str
from statsmodels.tsa.vector_ar.var_model import VAR

mdata = sm.datasets.macrodata.load_pandas().data
dates = mdata[['year', 'quarter']].astype(int).astype(str)
quarterly = dates["year"] + "Q" + dates["quarter"]
quarterly = dates_from_str(quarterly)

mdata = mdata[['realgdp','realcons','realinv']]
mdata.index = pd.DatetimeIndex(quarterly)
data = np.log(mdata).diff().dropna() # log difference

# make a VAR model
model = VAR(data)
results = model.fit(2)
print results.summary()
results.plot()
results.plot_acorr() #autocorrelation 

model.select_order(15)
results = model.fit(maxlags=15, ic='aic')

irf = results.irf(10)
irf.plot(orth=True) #Orthogonalization

pylab.show()
開發者ID:shimaXX,項目名稱:workspace,代碼行數:32,代碼來源:var_example.py

示例9: VAR

# 需要導入模塊: from statsmodels.tsa.vector_ar.var_model import VAR [as 別名]
# 或者: from statsmodels.tsa.vector_ar.var_model.VAR import fit [as 別名]
#calc beta's alpha's 


#do forecast of returns, correlation. Use to Weight
rets.iloc[:,0:10].plot()
###DETOUR TO VAR FORECASTING

from statsmodels.tsa.vector_ar.var_model import VAR, VARResults, VARProcess
import statsmodels
statsmodels.version.version

#Check for NA's in data - have to reduce number of series used as full 30
#gave singular matrix
v1 = VAR(rets_train[series_red], freq='D')
v1.select_order(maxlags=30)
results = v1.fit(5) #From fitted
# results.summary()
results.plot()
# results.plot_acorr()
# plt.show()

#Make forecast for 3months
test_index = rets_test.index
fc_range = pd.date_range(start=test_index[0], periods=2, freq='3M')
fc_periods = len(rets_test[fc_range[0]:fc_range[1]])
lag_order = results.k_ar
fc = results.forecast(rets_train[series_red].values,fc_periods)
fc.shape
fc[:,-1]
df_fc = pd.DataFrame(fc,index=rets.index[0:fc_periods],columns=rets_train[series_red])
df_fc.plot()
開發者ID:GBelzoni,項目名稱:BigGits,代碼行數:33,代碼來源:CAPM.py


注:本文中的statsmodels.tsa.vector_ar.var_model.VAR.fit方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。