本文整理匯總了Python中statsmodels.tsa.arima_model.ARIMA.fit方法的典型用法代碼示例。如果您正苦於以下問題:Python ARIMA.fit方法的具體用法?Python ARIMA.fit怎麽用?Python ARIMA.fit使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類statsmodels.tsa.arima_model.ARIMA
的用法示例。
在下文中一共展示了ARIMA.fit方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: forecast_by_cluster
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
def forecast_by_cluster(self, hold_out_n, n_ahead, order, exog):
dfit = self.ds_agg_by_c
efit = efor = None
if hold_out_n > 0:
# hold out validation required
dfit = dfit[:-hold_out_n]
if (exog is not None):
efit = exog[:-hold_out_n]
efor = exog[-hold_out_n:]
else:
if (exog is not None):
efit = exog[:-n_ahead]
efor = exog[-n_ahead:]
ds_c_for = np.zeros((n_ahead, self.n_clusters))
for c in tqdm(range(self.n_clusters)):
cdfit = dfit[:,c]
if sum(cdfit) == 0:
ds_c_for[:,c] = 0
continue
m = ARIMA(cdfit, exog = efit, order = order)
mf = m.fit()
f = mf.forecast(n_ahead, exog = efor, alpha = .95)[0]
ds_c_for[:,c] = f
self.ds_c_for = ds_c_for
開發者ID:l1990790120,項目名稱:l1990790120.github.io,代碼行數:29,代碼來源:COLLEGE_ENROLLMENT_FORECAST_INST_LEVEL_vaildation_mod.py
示例2: __init__
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
class ARIMAModelResult:
def __init__(self, autoregressive_periods, integrated_order, moving_average_model_periods, training_data, test):
self.autoregressive_periods = autoregressive_periods
self.integrated_order = integrated_order
self.moving_average_model_periods = moving_average_model_periods
self.model = ARIMA(training_data, order=(
self.autoregressive_periods,
self.integrated_order,
self.moving_average_model_periods
)
)
self.fit = self.model.fit()
self.aic = self.fit.aic
self.predictions = self.fit.forecast(steps=len(test))[0]
self.model_fitness = mean_squared_error(test, self.predictions)
def __eq__(self, other):
return self.model_fitness == other.model_fitness
def __lt__(self, other):
return self.model_fitness < other.model_fitness
def __gt__(self, other):
return self.model_fitness > other.model_fitness
def __str__(self):
return "Autoregressive periods: {}\nIntegraded Order: {}\nMoving Average Model Periods: {}\n Predictions: {}\nMSE: {}".format(
self.autoregressive_periods,
self.integrated_order,
self.moving_average_model_periods,
self.predictions,
self.model_fitness
)
示例3: ARIMA_forcast2
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
def ARIMA_forcast2(self):
# this approach forecast 1 data pt at a time, then add the new forecast datapoint to the training data
# then repeat
import warnings
warnings.filterwarnings('ignore')
# test without taking log of data
# using rolling avg
y = vr_df2_ts.values
train = vr_df2_ts.values[286:574]
prediction = list()
for t in range(288):
modelY = ARIMA(y, order=(1,1,1))
results = modelY.fit(disp=-1)
out = results.forecast()
yhat = out[0]
prediction.append(yhat)
y = np.append(y,train[t])
forecast = pd.Series(prediction,index=pd.date_range(start='2017-02-09 00:00:00', periods=288,freq='5min'))
exog = vr_df2_ts.iloc[286:574]
exog.set_index(pd.date_range(start='2017-02-09 00:00:00', periods=288,freq='5min'),inplace=True)
plt.plot(vr_df2_ts)
plt.plot(exog,'g')
plt.plot(forecast,'r')
示例4: get_grouped_data
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
def get_grouped_data(self, forecast=False):
cdf = self.cumulative_sum()
gdf = self.group_by('M')
if cdf.shape[0] > gdf.shape[0]:
df = cdf.to_frame()
df.columns = ['cumulative sum']
df['total added'] = gdf.to_frame()['event']
else:
df = gdf.to_frame()
df.columns = ['total added']
df['cumulative sum'] = cdf.to_frame()['event']
if forecast:
mtotals = pd.to_numeric(df['cumulative sum'], downcast='float')
model = ARIMA(mtotals, order=(10,1,0))
model_fit = model.fit(disp=0)
forecast = model_fit.forecast(steps=12)
dates = pd.date_range('2017-04-30', '2018-06-01', freq='M')
records = zip([x.to_datetime() for x in dates], forecast[0])
ndf = pd.DataFrame.from_records(records)
ndf.columns = ['date', 'forecast']
ndf.set_index(['date'], inplace=True)
df = pd.concat([df, ndf], axis=1)
return df
示例5: arima_predict
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
def arima_predict(train_dat, n_predictions, p=2, d=0, q=0):
arima = ARIMA(np.array(train_dat).astype(np.float), [p, d, q])
diffed_logged_results = arima.fit(trend='c', disp=False)
preds = diffed_logged_results.predict(len(train_dat),
len(train_dat) + n_predictions - 1,
exog=None, dynamic=False)
return preds
示例6: arimamodel
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
def arimamodel(ts):
ts_log, ts_log_diff = trend(ts)
model = ARIMA(ts_log, order = (2,1,2))
result_ARIMA = model.fit(disp = -1)
m = ARIMA(ts, order = (2,1,2)).fit()
arimares = ARMAResults(m, params = '')
pre = arimares.forcast(steps = 60)
# pre = m.predict('20150901', '20151230', dynamic = True)
print pre
# prediction back to the original scale
predictions_ARIMA = backorg(result_ARIMA, ts_log)
plt.plot(predictions_ARIMA)
# print (predictions_ARIMA - ts)[40:80]
plt.plot(ts, color = 'red')
# plt.plot(ts_log_diff)
# plt.plot(result_ARIMA.fittedvalues, color = 'red')
plt.title('RSS: %.4F' % np.sum((result_ARIMA.fittedvalues - ts_log_diff)**2))
plt.show()
示例7: mamodel
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
def mamodel(ts):
ts_log, ts_log_diff = trend(ts)
model = ARIMA(ts_log, order = (0,1,1))
result_MA = model.fit(disp = -1)
plt.plot(ts_log_diff)
plt.plot(result_MA.fittedvalues, color = 'red')
plt.title('RSS: %.4F' % np.sum((result_MA.fittedvalues - ts_log_diff)**2))
plt.show(block = False)
示例8: armodel
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
def armodel(ts):
ts_log, ts_log_diff = trend(ts)
model = ARIMA(ts_log, order = (1,1,0))
result_AR = model.fit(disp = -1)
plt.plot(ts_log_diff)
plt.plot(result_AR.fittedvalues, color = 'red')
# pdb.set_trace()
plt.title('RSS: %.4F' % np.sum((result_AR.fittedvalues - ts_log_diff)**2))
plt.show(block = False)
示例9: ARIMA_fit
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
def ARIMA_fit(self):
# order=(p,d,q) AR and MA can also be modeled separately by enter 0 for either p or q
model = ARIMA(ts_log, order=(5,1,5))
self.results_ARIMA = model.fit(disp=-1)
print(results_ARIMA.summary())
plt.plot(ts_log_diff)
plt.plot(results_ARIMA.fittedvalues, color='r')
plt.title('RSS: %.4f'% sum((results_ARIMA.fittedvalues-ts_log_diff['in_tpkts'])**2))
示例10: ARIMA_fun
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
def ARIMA_fun( data ):
lag_pacf = pacf( data, nlags=20, method='ols' )
lag_acf, ci2, Q = acf( data, nlags=20 , qstat=True, unbiased=True)
model = ARIMA(orig_data, order=(1, 1, int(ci2[0]) ) )
results_ARIMA = model.fit(disp=-1)
plt.subplot(121)
plt.plot( data )
plt.plot(results_ARIMA.fittedvalues)
#plt.show()
return results_ARIMA.fittedvalues
示例11: fit
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
def fit(self):
if len(self.df) < self.t_window: return None
model = ARIMA(self.df, order=(2, 1, 1))
results_ARIMA = model.fit(disp=-1)
forecast = results_ARIMA.predict(start = self.t_window, end= self.t_window+2, dynamic= True)
forecast = forecast.cumsum()
predictions_ARIMA_log = pd.Series(self.df.ix[self.t_window-1], index=forecast.index)
predictions_ARIMA_log = predictions_ARIMA_log.add(forecast,fill_value=0)
predictions_ARIMA = np.exp(predictions_ARIMA_log)
#print self.df
return predictions_ARIMA
示例12: objfunc
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
def objfunc(order, *params):
series = params
try:
mod = ARIMA(series, order, exog=None)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
res = mod.fit(disp=0, solver='bfgs', maxiter=5000)
except:
return float('inf')
if math.isnan(res.aic):
return float('inf')
return res.aic
示例13: pridictNextNdays
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
def pridictNextNdays(self,train):
timeSerize = train[self.selected]
timeSerize = timeSerize[self.start_train:self.end_train]
model = ARIMA(timeSerize, order=(self.p,self.d,self.q), freq='D') # build a model
fitting = model.fit(disp=False)
forecast, fcasterr, conf_int = fitting.forecast(steps=self.next_ndays, alpha=.05)
# params = fitting.params
# residuals = fitting.resid
# p = fitting.k_ar
# q = fitting.k_ma
# k_exog = fitting.k_exog
# k_trend = fitting.k_trend
# forecast = _arma_predict_out_of_sample(params,self.next_ndays,residuals, p, q, k_trend, k_exog, endog=timeSerize, exog=None, start=len(timeSerize))
return forecast
示例14: predict_arima_next_days
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
def predict_arima_next_days(self, item):
ts = df_train[item]
ts = ts.sort_index() # sorting index Date
ts_last_day = ts[self.fc] # real last data
ts = ts[0:self.fc] # index 0 until last data - 1
model = ARIMA(ts, order=(self.p, self.d, self.q)) # build a model
fitting = model.fit(disp=False)
# n_days forecasting
forecast, fcasterr, conf_int = fitting.forecast(steps=self.n_days, alpha=.05)
# ts: history until 1 day before self.fc
# ts[self.fc]: last day
# forecast: 1 day forecast (time equalto ts[self.fc])
return ts, ts_last_day, forecast
示例15: testArima
# 需要導入模塊: from statsmodels.tsa.arima_model import ARIMA [as 別名]
# 或者: from statsmodels.tsa.arima_model.ARIMA import fit [as 別名]
def testArima(self,train):
realSerize = train[self.selected]
timeSerize = realSerize[self.start_train:self.end_train]
realData = train[self.selected][self.end_train:self.next_ndays]
model = ARIMA(timeSerize, order=(self.p,self.d, self.q)) # build a model
fitting = model.fit(disp=False)
forecast, fcasterr, conf_int = fitting.forecast(steps=self.next_ndays, alpha=.05)
# params = fitting.params
# residuals = fitting.resid
# p = fitting.k_ar
# q = fitting.k_ma
# k_exog = fitting.k_exog
# k_trend = fitting.k_trend
# forecast = _arma_predict_out_of_sample(params,self.next_ndays,residuals, p, q, k_trend, k_exog, endog=timeSerize, exog=None, start=len(timeSerize))
return {'real':list(realSerize)[self.end_train:self.end_train+self.next_ndays],'pridiction':forecast}