當前位置: 首頁>>代碼示例>>Python>>正文


Python DescrStatsW.asrepeats方法代碼示例

本文整理匯總了Python中statsmodels.stats.weightstats.DescrStatsW.asrepeats方法的典型用法代碼示例。如果您正苦於以下問題:Python DescrStatsW.asrepeats方法的具體用法?Python DescrStatsW.asrepeats怎麽用?Python DescrStatsW.asrepeats使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在statsmodels.stats.weightstats.DescrStatsW的用法示例。


在下文中一共展示了DescrStatsW.asrepeats方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_ztest_ztost

# 需要導入模塊: from statsmodels.stats.weightstats import DescrStatsW [as 別名]
# 或者: from statsmodels.stats.weightstats.DescrStatsW import asrepeats [as 別名]
def test_ztest_ztost():
    # compare weightstats with separately tested proportion ztest ztost
    import statsmodels.stats.proportion as smprop

    x1 = [0, 1]
    w1 = [5, 15]

    res2 = smprop.proportions_ztest(15, 20., value=0.5)
    d1 = DescrStatsW(x1, w1)
    res1 = d1.ztest_mean(0.5)
    assert_allclose(res1, res2, rtol=0.03, atol=0.003)

    d2 = DescrStatsW(x1, np.array(w1)*21./20)
    res1 = d2.ztest_mean(0.5)
    assert_almost_equal(res1, res2, decimal=12)

    res1 = d2.ztost_mean(0.4, 0.6)
    res2 = smprop.proportions_ztost(15, 20., 0.4, 0.6)
    assert_almost_equal(res1[0], res2[0], decimal=12)

    x2 = [0, 1]
    w2 = [10, 10]
    # d2 = DescrStatsW(x1, np.array(w1)*21./20)
    d2 = DescrStatsW(x2, w2)
    res1 = ztest(d1.asrepeats(), d2.asrepeats())
    res2 = smprop.proportions_chisquare(np.asarray([15, 10]),
                                        np.asarray([20., 20]))
    # TODO: check this is this difference expected?, see test_proportion
    assert_allclose(res1[1], res2[1], rtol=0.03)

    res1a = CompareMeans(d1, d2).ztest_ind()
    assert_allclose(res1a[1], res2[1], rtol=0.03)
    assert_almost_equal(res1a, res1, decimal=12)
開發者ID:ChadFulton,項目名稱:statsmodels,代碼行數:35,代碼來源:test_weightstats.py

示例2: test_weightstats_3

# 需要導入模塊: from statsmodels.stats.weightstats import DescrStatsW [as 別名]
# 或者: from statsmodels.stats.weightstats.DescrStatsW import asrepeats [as 別名]
    def test_weightstats_3(self):
        x1_2d, x2_2d = self.x1_2d, self.x2_2d
        w1, w2 = self.w1, self.w2

        d1w_2d = DescrStatsW(x1_2d, weights=w1)
        d2w_2d = DescrStatsW(x2_2d, weights=w2)
        x1r_2d = d1w_2d.asrepeats()
        x2r_2d = d2w_2d.asrepeats()

        assert_almost_equal(x2r_2d.mean(0), d2w_2d.mean, 14)
        assert_almost_equal(x2r_2d.var(0), d2w_2d.var, 14)
        assert_almost_equal(x2r_2d.std(0), d2w_2d.std, 14)
        assert_almost_equal(np.cov(x2r_2d.T, bias=1), d2w_2d.cov, 14)
        assert_almost_equal(np.corrcoef(x2r_2d.T), d2w_2d.corrcoef, 14)

#        print d1w_2d.ttest_mean(3)
#        #scipy.stats.ttest is also vectorized
#        print stats.ttest_1samp(x1r_2d, 3)
        t, p, d = d1w_2d.ttest_mean(3)
        assert_almost_equal([t, p], stats.ttest_1samp(x1r_2d, 3), 11)
        # print [stats.ttest_1samp(xi, 3) for xi in x1r_2d.T]
        cm = CompareMeans(d1w_2d, d2w_2d)
        ressm = cm.ttest_ind()
        resss = stats.ttest_ind(x1r_2d, x2r_2d)
        assert_almost_equal(ressm[:2], resss, 14)
開發者ID:ChadFulton,項目名稱:statsmodels,代碼行數:27,代碼來源:test_weightstats.py

示例3: test_weightstats_2

# 需要導入模塊: from statsmodels.stats.weightstats import DescrStatsW [as 別名]
# 或者: from statsmodels.stats.weightstats.DescrStatsW import asrepeats [as 別名]
    def test_weightstats_2(self):
        x1, x2 = self.x1, self.x2
        w1, w2 = self.w1, self.w2

        d1 = DescrStatsW(x1)
        d1w = DescrStatsW(x1, weights=w1)
        d2w = DescrStatsW(x2, weights=w2)
        x1r = d1w.asrepeats()
        x2r = d2w.asrepeats()
#        print 'random weights'
#        print ttest_ind(x1, x2, weights=(w1, w2))
#        print stats.ttest_ind(x1r, x2r)
        assert_almost_equal(ttest_ind(x1, x2, weights=(w1, w2))[:2],
                            stats.ttest_ind(x1r, x2r), 14)
        # not the same as new version with random weights/replication
#        assert x1r.shape[0] == d1w.sum_weights
#        assert x2r.shape[0] == d2w.sum_weights

        assert_almost_equal(x2r.mean(0), d2w.mean, 14)
        assert_almost_equal(x2r.var(), d2w.var, 14)
        assert_almost_equal(x2r.std(), d2w.std, 14)
        # note: the following is for 1d
        assert_almost_equal(np.cov(x2r, bias=1), d2w.cov, 14)
        # assert_almost_equal(np.corrcoef(np.x2r), d2w.corrcoef, 19)
        # TODO: exception in corrcoef (scalar case)

        # one-sample tests
#        print d1.ttest_mean(3)
#        print stats.ttest_1samp(x1, 3)
#        print d1w.ttest_mean(3)
#        print stats.ttest_1samp(x1r, 3)
        assert_almost_equal(d1.ttest_mean(3)[:2], stats.ttest_1samp(x1, 3), 11)
        assert_almost_equal(d1w.ttest_mean(3)[:2],
                            stats.ttest_1samp(x1r, 3), 11)
開發者ID:ChadFulton,項目名稱:statsmodels,代碼行數:36,代碼來源:test_weightstats.py

示例4: test_weightstats_2

# 需要導入模塊: from statsmodels.stats.weightstats import DescrStatsW [as 別名]
# 或者: from statsmodels.stats.weightstats.DescrStatsW import asrepeats [as 別名]
    def test_weightstats_2(self):
        x1, x2 = self.x1, self.x2
        w1, w2 = self.w1, self.w2

        d1 = DescrStatsW(x1)
        d1w = DescrStatsW(x1, weights=w1)
        d2w = DescrStatsW(x2, weights=w2)
        x1r = d1w.asrepeats()
        x2r = d2w.asrepeats()
#        print 'random weights'
#        print ttest_ind(x1, x2, weights=(w1, w2))
#        print stats.ttest_ind(x1r, x2r)
        assert_almost_equal(ttest_ind(x1, x2, weights=(w1, w2))[:2],
                            stats.ttest_ind(x1r, x2r), 14)
        #not the same as new version with random weights/replication
#        assert x1r.shape[0] == d1w.sum_weights
#        assert x2r.shape[0] == d2w.sum_weights
        assert_almost_equal(x2r.var(), d2w.var, 14)
        assert_almost_equal(x2r.std(), d2w.std, 14)


        #one-sample tests
#        print d1.ttest_mean(3)
#        print stats.ttest_1samp(x1, 3)
#        print d1w.ttest_mean(3)
#        print stats.ttest_1samp(x1r, 3)
        assert_almost_equal(d1.ttest_mean(3)[:2], stats.ttest_1samp(x1, 3), 11)
        assert_almost_equal(d1w.ttest_mean(3)[:2], stats.ttest_1samp(x1r, 3), 11)
開發者ID:CRP,項目名稱:statsmodels,代碼行數:30,代碼來源:test_weightstats.py

示例5: test_weightstats_3

# 需要導入模塊: from statsmodels.stats.weightstats import DescrStatsW [as 別名]
# 或者: from statsmodels.stats.weightstats.DescrStatsW import asrepeats [as 別名]
    def test_weightstats_3(self):
        x1_2d, x2_2d = self.x1_2d, self.x2_2d
        w1, w2 = self.w1, self.w2

        d1w_2d = DescrStatsW(x1_2d, weights=w1)
        d2w_2d = DescrStatsW(x2_2d, weights=w2)
        x1r_2d = d1w_2d.asrepeats()
        x2r_2d = d2w_2d.asrepeats()
#        print d1w_2d.ttest_mean(3)
#        #scipy.stats.ttest is also vectorized
#        print stats.ttest_1samp(x1r_2d, 3)
        t,p,d = d1w_2d.ttest_mean(3)
        assert_almost_equal([t, p], stats.ttest_1samp(x1r_2d, 3), 11)
        #print [stats.ttest_1samp(xi, 3) for xi in x1r_2d.T]
        ressm = CompareMeans(d1w_2d, d2w_2d).ttest_ind()
        resss = stats.ttest_ind(x1r_2d, x2r_2d)
        assert_almost_equal(ressm[:2], resss, 14)
開發者ID:CRP,項目名稱:statsmodels,代碼行數:19,代碼來源:test_weightstats.py

示例6: TestWeightstats2d_nobs

# 需要導入模塊: from statsmodels.stats.weightstats import DescrStatsW [as 別名]
# 或者: from statsmodels.stats.weightstats.DescrStatsW import asrepeats [as 別名]
class TestWeightstats2d_nobs(CheckWeightstats2dMixin):

    @classmethod
    def setup_class(self):
        np.random.seed(9876789)
        n1, n2 = 20,30
        m1, m2 = 1, 1.2
        x1 = m1 + np.random.randn(n1, 3)
        x2 = m2 + np.random.randn(n2, 3)
        w1 = np.random.randint(1,4, n1)
        w2 = np.random.randint(1,4, n2)

        self.x1, self.x2 = x1, x2
        self.w1, self.w2 = w1, w2
        self.d1w = DescrStatsW(x1, weights=w1, ddof=0)
        self.d2w = DescrStatsW(x2, weights=w2, ddof=1)
        self.x1r = self.d1w.asrepeats()
        self.x2r = self.d2w.asrepeats()
開發者ID:AnaMP,項目名稱:statsmodels,代碼行數:20,代碼來源:test_weightstats.py


注:本文中的statsmodels.stats.weightstats.DescrStatsW.asrepeats方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。