當前位置: 首頁>>代碼示例>>Python>>正文


Python multicomp.MultiComparison類代碼示例

本文整理匯總了Python中statsmodels.stats.multicomp.MultiComparison的典型用法代碼示例。如果您正苦於以下問題:Python MultiComparison類的具體用法?Python MultiComparison怎麽用?Python MultiComparison使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


在下文中一共展示了MultiComparison類的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_incorrect_output

    def test_incorrect_output(self):
        # too few groups
        assert_raises(ValueError, MultiComparison, np.array([1] * 10), [1, 2] * 4)
        # too many groups
        assert_raises(ValueError, MultiComparison, np.array([1] * 10), [1, 2] * 6)
        # just one group
        assert_raises(ValueError, MultiComparison, np.array([1] * 10), [1] * 10)

        # group_order doesn't select all observations, only one group left
        assert_raises(ValueError, MultiComparison, np.array([1] * 10),
                     [1, 2] * 5, group_order=[1])

        # group_order doesn't select all observations,
        # we do tukey_hsd with reduced set of observations
        data = np.arange(15)
        groups = np.repeat([1, 2, 3], 5)
        mod1 = MultiComparison(np.array(data), groups, group_order=[1, 2])
        res1 = mod1.tukeyhsd(alpha=0.01)
        mod2 = MultiComparison(np.array(data[:10]), groups[:10])
        res2 = mod2.tukeyhsd(alpha=0.01)

        attributes = ['confint', 'data', 'df_total', 'groups', 'groupsunique',
                     'meandiffs', 'q_crit', 'reject', 'reject2', 'std_pairs',
                     'variance']
        for att in attributes:
            err_msg = att + 'failed'
            assert_allclose(getattr(res1, att), getattr(res2, att), rtol=1e-14,
                            err_msg=err_msg)

        attributes = ['data', 'datali', 'groupintlab', 'groups', 'groupsunique',
                      'ngroups', 'nobs', 'pairindices']
        for att in attributes:
            err_msg = att + 'failed'
            assert_allclose(getattr(mod1, att), getattr(mod2, att), rtol=1e-14,
                            err_msg=err_msg)
開發者ID:MridulS,項目名稱:statsmodels,代碼行數:35,代碼來源:test_pairwise.py

示例2: test_table_names_custom_group_order

 def test_table_names_custom_group_order(self):
     # if the group_order parameter is used, the groups should
     # be reported in the specified order
     mc = MultiComparison(self.endog, self.groups,
                          group_order=[b'physical', b'medical', b'mental'])
     res = mc.tukeyhsd(alpha=self.alpha)
     #print(res)
     t = res._results_table
     expected_order = [(b'physical',b'medical'),
                       (b'physical',b'mental'),
                       (b'medical', b'mental')]
     for i in range(1, 4):
         first_group = t[i][0].data
         second_group = t[i][1].data
         assert_((first_group, second_group) == expected_order[i - 1])
開發者ID:Bonfils-ebu,項目名稱:statsmodels,代碼行數:15,代碼來源:test_pairwise.py

示例3: CheckTuckeyHSD

class CheckTuckeyHSD(object):

    @classmethod
    def setup_class_(self):
        self.mc = MultiComparison(self.endog, self.groups)
        self.res = self.mc.tukeyhsd(alpha=self.alpha)

    def test_multicomptukey(self):
        meandiff1 = self.res[1][2]
        assert_almost_equal(meandiff1, self.meandiff2, decimal=14)

        confint1 = self.res[1][4]
        assert_almost_equal(confint1, self.confint2, decimal=2)

        reject1 = self.res[1][1]
        assert_equal(reject1, self.reject2)

    def test_group_tukey(self):
        res_t = get_thsd(self.mc,alpha=self.alpha)
        assert_almost_equal(res_t[4], self.confint2, decimal=2)

    def test_shortcut_function(self):
        #check wrapper function
        res = pairwise_tukeyhsd(self.endog, self.groups, alpha=self.alpha)
        assert_almost_equal(res[1][4], self.res[1][4], decimal=14)
開發者ID:Code-fish,項目名稱:statsmodels,代碼行數:25,代碼來源:test_pairwise.py

示例4: ols

( 29,  'medical',  3 ),
( 30,  'medical',  1 )], dtype=[('idx', '<i4'),
                                ('Treatment', '|S8'),
                                ('StressReduction', '<i4')])

# First, do an one-way ANOVA
df = pd.DataFrame(dta2)
model = ols('StressReduction ~ C(Treatment)',df).fit()

anovaResults =  anova_lm(model)
print anovaResults
if anovaResults['PR(>F)'][0] < 0.05:
    print('One of the groups is different.')

#Then, do the multiple testing
mod = MultiComparison(dta2['StressReduction'], dta2['Treatment'])
print mod.tukeyhsd()[0]

# The following code produces the same printout
res2 = pairwise_tukeyhsd(dta2['StressReduction'], dta2['Treatment'])
#print res2[0]

# Show the group names
print mod.groupsunique

# Generate a print
import matplotlib.pyplot as plt
plt.plot([0,1,2], res2[1][2], 'o')
plt.errorbar([0,1,2], res2[1][2], yerr=np.abs(res2[1][4].T-res2[1][2]), ls='o')
xlim = -0.5, 2.5
plt.hlines(0, *xlim)
開發者ID:josef-pkt,項目名稱:statsintro,代碼行數:31,代碼來源:multipleTesting.py

示例5: position_stats

def position_stats(df, name_mapping=None):

    # print '### position stats'
    from statsmodels.stats.weightstats import ztest
    from functools32 import partial, wraps
    POS = df.position.unique()
    POS.sort()
    model = 'value ~ group'
    allpvals = None
    header = None
    DF = None

    ttest_log_wrap = wraps(
        partial(ttest_ind_log, equal_var=False))(ttest_ind_log)
    ttest_ind_nev = wraps(
        partial(stats.ttest_ind, equal_var=False))(stats.ttest_ind)
    mwu_test = wraps(partial(stats.mannwhitneyu, use_continuity=False))(
        stats.mannwhitneyu)

    bootstrap_sample_num = 1000
    # print df

    stats_test = ttest_ind_nev
    GROUPS = df.group.unique()
    # GROUPS = [0,3]

    for pos in POS:
        # print pos
        data = df[df.position == pos]
        data = data.groupby(['sid']).mean()
        data = resample_data(data, num_sample_per_pos=BOOTSTRAP_NUM)
        # print data
        # print data.group.unique()
        # data = df[(df.group == 0) | (df.group == 3)]
        # print data
        # sys.exit()

        #cross = smf.ols(model, data=data).fit()
        #anova = sm.stats.anova_lm(cross, type=1)
        # print data.group

        mcp = MultiComparison(data.value, data.group.astype(int))

        rtp = mcp.allpairtest(stats_test, method='bonf')
        mheader = []
        for itest in rtp[2]:
            name1 = itest[0]
            name2 = itest[1]
            if name_mapping is not None:
                name1 = name_mapping[str(name1)]
                name2 = name_mapping[str(name2)]

            mheader.append("{} - {}".format(name1, name2))

        if not header or len(mheader) > len(header):
            header = mheader

        # get the uncorrecte pvals
        pvals = rtp[1][0][:, 1]

        ndf = pd.DataFrame(data=[pvals], columns=mheader)
        if allpvals is None:
            allpvals = ndf
        else:
            allpvals = pd.concat([allpvals, ndf])

    # return allpvals
    # corr_pvals = allpvals
    # print allpvals
    # return allpvals

    flatten = allpvals.values.ravel()
    flatten = flatten * 2
    mcpres = multipletests(flatten, alpha=0.05, method='bonf')
    # print mcpres
    corr_pvals = np.array(mcpres[1])
    # print corr_pvals
    corr_pvals = np.reshape(corr_pvals, (len(POS), -1))

    # print corr_pvals,corr_pvals.shape,header
    data = pd.DataFrame(data=corr_pvals, columns=header)
    data = data[data.columns[:3]]
    return data
開發者ID:sinkpoint,項目名稱:sagit,代碼行數:83,代碼來源:fiber_stats_viz.py

示例6: main

def main():
    # Note: the statsmodels module is required here.
    from statsmodels.stats.multicomp import (pairwise_tukeyhsd,
                                             MultiComparison)
    from statsmodels.formula.api import ols
    from statsmodels.stats.anova import anova_lm
    
    # Set up the data, as a structured array.
    # The first and last field are 32-bit intergers; the second field is an
    # 8-byte string. Note that here we can also give names to the individual
    # fields!
    dta2 = np.rec.array([
    (  1,   'mental',  2 ),
    (  2,   'mental',  2 ),
    (  3,   'mental',  3 ),
    (  4,   'mental',  4 ),
    (  5,   'mental',  4 ),
    (  6,   'mental',  5 ),
    (  7,   'mental',  3 ),
    (  8,   'mental',  4 ),
    (  9,   'mental',  4 ),
    ( 10,   'mental',  4 ),
    ( 11, 'physical',  4 ),
    ( 12, 'physical',  4 ),
    ( 13, 'physical',  3 ),
    ( 14, 'physical',  5 ),
    ( 15, 'physical',  4 ),
    ( 16, 'physical',  1 ),
    ( 17, 'physical',  1 ),
    ( 18, 'physical',  2 ),
    ( 19, 'physical',  3 ),
    ( 20, 'physical',  3 ),
    ( 21,  'medical',  1 ),
    ( 22,  'medical',  2 ),
    ( 23,  'medical',  2 ),
    ( 24,  'medical',  2 ),
    ( 25,  'medical',  3 ),
    ( 26,  'medical',  2 ),
    ( 27,  'medical',  3 ),
    ( 28,  'medical',  1 ),
    ( 29,  'medical',  3 ),
    ( 30,  'medical',  1 )], dtype=[('idx', '<i4'),
                                    ('Treatment', '|S8'),
                                    ('StressReduction', '<i4')])
    
    # First, do an one-way ANOVA
    df = pd.DataFrame(dta2)
    model = ols('StressReduction ~ C(Treatment)',df).fit()
    
    anovaResults =  anova_lm(model)
    print(anovaResults)
    if anovaResults['PR(>F)'][0] < 0.05:
        print('One of the groups is different.')
    
    #Then, do the multiple testing
    mod = MultiComparison(dta2['StressReduction'], dta2['Treatment'])
    print((mod.tukeyhsd().summary()))
    
    # The following code produces the same printout
    res2 = pairwise_tukeyhsd(dta2['StressReduction'], dta2['Treatment'])
    #print res2[0]
    
    # Show the group names
    print((mod.groupsunique))
    
    # Generate a print
    import matplotlib.pyplot as plt
    xvals = np.arange(3)
    plt.plot(xvals, res2.meandiffs, 'o')
    #plt.errorbar(xvals, res2.meandiffs, yerr=np.abs(res2[1][4].T-res2[1][2]), ls='o')
    errors = np.ravel(np.diff(res2.confint)/2)
    plt.errorbar(xvals, res2.meandiffs, yerr=errors, ls='o')
    xlim = -0.5, 2.5
    plt.hlines(0, *xlim)
    plt.xlim(*xlim)
    pair_labels = mod.groupsunique[np.column_stack(res2._multicomp.pairindices)]
    plt.xticks(xvals, pair_labels)
    plt.title('Multiple Comparison of Means - Tukey HSD, FWER=0.05' +
              '\n Pairwise Mean Differences')          
    
    # Save to outfile
    outFile = 'MultComp.png'
    plt.savefig('MultComp.png', dpi=200)
    print(('Figure written to {0}'.format(outFile)))
    
    plt.show()
    
    # Instead of the Tukey's test, we can do pairwise t-test
    # First, with the "Holm" correction
    rtp = mod.allpairtest(stats.ttest_rel, method='Holm')
    print((rtp[0]))
    
    # and then with the Bonferroni correction
    print((mod.allpairtest(stats.ttest_rel, method='b')[0]))
    
    # Done this way, the variance is calculated at each comparison.
    # If you want the joint variance across all samples, you have to 
    # use a few tricks:(http://jpktd.blogspot.co.at/2013/03/multiple-comparison-and-tukey-hsd-or_25.html)
    res2 = pairwise_tukeyhsd(dta2['StressReduction'], dta2['Treatment'])
    studentized_mean = res2.meandiffs
#.........這裏部分代碼省略.........
開發者ID:fluxium,項目名稱:statsintro,代碼行數:101,代碼來源:multipleTesting.py

示例7: setup_class_

 def setup_class_(self):
     self.mc = MultiComparison(self.endog, self.groups)
     self.res = self.mc.tukeyhsd(alpha=self.alpha)
開發者ID:Code-fish,項目名稱:statsmodels,代碼行數:3,代碼來源:test_pairwise.py

示例8: print

('Pat', 9),
('Pat', 4),
('Jack', 4),
('Jack', 8),
('Jack', 7),
('Jack', 5),
('Jack', 1),
('Jack', 5),
('Alex', 9),
('Alex', 8),
('Alex', 8),
('Alex', 10),
('Alex', 5),
('Alex', 10)], dtype = [('Archer','|U5'),('Score', '<i8')])

f, p = stats.f_oneway(data[data['Archer'] == 'Pat'].Score,
	              data[data['Archer'] == 'Jack'].Score,
                      data[data['Archer'] == 'Alex'].Score)

print ('One-way ANOVA')
print ('=============')

print ('F value:', f)
print ('P value:', p, '\n')

mc = MultiComparison(data['Score'], data['Archer'])
result = mc.tukeyhsd()

print(result)
print(mc.groupsunique)
開發者ID:nmanchev,項目名稱:CleverOwl,代碼行數:30,代碼來源:archers.py

示例9: run_stats

def run_stats(experiment):
    '''Run independent T-test or one-way ANOVA dependent on number of groups.

    Args:
        experiment (Experiment instance): An instance of the Experiment class.

    Returns:
        A new Pandas data frame with p values, adjusted p values and Tukey HSD
        post-hoc results if there are > 2 groups.

    '''

    groups = experiment.get_groups()
    samples = experiment.get_sampleids()
    df = experiment.df
    all_vals = []

## Get values for each group, ready for T-test or ANOVA.

    for group in groups:
        sample_re = re.compile(group + "_\d+$")
        ids = [sample for sample in samples if sample_re.match(sample)]
        vals = list(map(list, df[ids].values))
        all_vals.append(vals)

## Decide whether to use T-test or ANOVA dependent on number of groups.
    if len(groups) == 2:
        p_vals = [ttest_ind(all_vals[0][i], all_vals[1][i])[1] for i in range(len(all_vals[0]))]
    else:
        p_vals = []
        for i in range(len(all_vals[0])):
            row_vals = [all_vals[j][i] for j in range(len(groups))]
            p_val = f_oneway(*row_vals)[1]
            p_vals.append(p_val)

## Adjust the p values and create a new data frame with them in.
    p_val_adj = list(multipletests(p_vals, method='fdr_bh')[1])
    new_df = df.ix[:, :5].copy()
    new_df['p_val'] = pd.Series(p_vals, index=new_df.index)
    new_df['p_val_adj'] = pd.Series(p_val_adj, index=new_df.index)

    ## Post-hoc test.

    ## Only do the post-hoc test if there are more than 2 groups, duh!
    if len(groups) > 2:
        vals_df = df[samples]
        group_ids = [sample.split('_')[0] for sample in vals_df.columns.values]
        posthoc_results = {}

        ## Run the post-hoc test on each row.
        for row in range(len(vals_df)):
            row_vals = vals_df.ix[row]
            mc = MultiComparison(row_vals, group_ids)
            mc_groups = mc.groupsunique
            results = mc.tukeyhsd()
            significant = results.reject
            pairs = list(zip(*[x.tolist() for x in mc.pairindices]))

            ## Go through each pair and add results to the posthoc_results dictionary.
            for i in range(len(pairs)):
                pair = list(pairs[i])
                pair.sort()
                pair_name = str(mc_groups[pair[0]]) + '_' + str(mc_groups[pair[1]])
                if pair_name in posthoc_results:
                    posthoc_results[pair_name].append(significant[i])
                else:
                    posthoc_results[pair_name] = [significant[i]]

        ## Add the post-hoc results to the data frame.
        for pair_name in posthoc_results:
            new_df['significant_' + pair_name] = posthoc_results[pair_name]

    return new_df
開發者ID:peteashton,項目名稱:dots_for_microarrays,代碼行數:73,代碼來源:dots_analysis.py

示例10: MultiComparison

                                        spectraTransform[np.where(dominant == listDominant[10])[0], w],
                                        spectraTransform[np.where(dominant == listDominant[11])[0], w],
                                        spectraTransform[np.where(dominant == listDominant[12])[0], w],
                                        spectraTransform[np.where(dominant == listDominant[13])[0], w],
                                        spectraTransform[np.where(dominant == listDominant[14])[0], w],
                                        spectraTransform[np.where(dominant == listDominant[15])[0], w],
                                        spectraTransform[np.where(dominant == listDominant[16])[0], w],
                                        spectraTransform[np.where(dominant == listDominant[17])[0], w],
                                        spectraTransform[np.where(dominant == listDominant[18])[0], w],
                                        spectraTransform[np.where(dominant == listDominant[19])[0], w],
                                        spectraTransform[np.where(dominant == listDominant[20])[0], w],
                                        spectraTransform[np.where(dominant == listDominant[21])[0], w],
                                        spectraTransform[np.where(dominant == listDominant[22])[0], w])
        # If the anova turns back a pvalue < 0.05, do multicomparison to figure out what samples are different
        if anovaResults[w, 1] < 0.05:
            mc = MultiComparison(spectraTransform[:, w], dominant)  # http://statsmodels.sourceforge.net/0.6.0/_modules/statsmodels/stats/multicomp.html
            result = mc.tukeyhsd()  # http://statsmodels.sourceforge.net/devel/generated/statsmodels.sandbox.stats.multicomp.MultiComparison.tukeyhsd.html
            inResults = np.array([mc.groupsunique[mc.pairindices[0]], mc.groupsunique[mc.pairindices[1]], result.meandiffs, result.confint[:, 0], result.confint[:, 1], result.std_pairs, result.reject]).T
            inResults = np.column_stack((np.repeat(wavelengths[w], len(result.reject)), inResults))
            tukeyResults = np.vstack((tukeyResults, inResults))

# Set up csv file to output statistical results
outStats = file(outLocation + dateTag + '_statistical_analysis.csv', 'wb')  # Opening in append mode
row1 = np.hstack(('normal distribution p value for original spectra', normalStats))
row2 = np.hstack(('kurtosis p value for original spectra', kurtosisStats))
row3 = np.hstack(('skew p value for original spectra', skewStats))
row4 = np.hstack(('normal distribution p value for transformed spectra', normalTransformStats))
row5 = np.hstack(('kurtosis p value for transformed spectra', kurtosisTransformStats))
row6 = np.hstack(('skew p value for transformed spectra', skewTransformStats))
row7 = np.hstack(('anova results for transformed spectra', anovaResults[:, 1]))
inRows = np.vstack((row1, row2, row3, row4, row5, row6, row7))
開發者ID:susanmeerdink,項目名稱:CDA-LDA-Classification,代碼行數:31,代碼來源:Statistical_analysis.py


注:本文中的statsmodels.stats.multicomp.MultiComparison類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。