本文整理匯總了Python中statsmodels.regression.recursive_ls.RecursiveLS類的典型用法代碼示例。如果您正苦於以下問題:Python RecursiveLS類的具體用法?Python RecursiveLS怎麽用?Python RecursiveLS使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了RecursiveLS類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_multiple_constraints
def test_multiple_constraints():
endog = dta['infl']
exog = add_constant(dta[['m1', 'unemp', 'cpi']])
constraints = [
'm1 + unemp = 1',
'cpi = 0',
]
mod = RecursiveLS(endog, exog, constraints=constraints)
res = mod.fit()
# See tests/results/test_rls.do
desired = [-0.7001083844336, -0.0018477514060, 1.0018477514060, 0]
assert_allclose(res.params, desired, atol=1e-10)
# See tests/results/test_rls.do
desired = [.4699552366, .0005369357, .0005369357, 0]
assert_allclose(res.bse[0], desired[0], atol=1e-1)
assert_allclose(res.bse[1:-1], desired[1:-1], atol=1e-4)
# See tests/results/test_rls.do
desired = -534.4292052931121
# Note that to compute what Stata reports as the llf, we need to use a
# different denominator for estimating the scale, and then compute the
# llf from the alternative recursive residuals
scale_alternative = np.sum((
res.standardized_forecasts_error[0, 1:] *
res.filter_results.obs_cov[0, 0]**0.5)**2) / mod.nobs
llf_alternative = np.log(norm.pdf(res.resid_recursive, loc=0,
scale=scale_alternative**0.5)).sum()
assert_allclose(llf_alternative, desired)
示例2: test_stata
def test_stata():
# Test the cusum and cusumsq statistics against Stata (cusum6)
# Note that here we change the loglikelihood_burn variable to explicitly
# excude the first 3 elements as in Stata, so we can compare directly
mod = RecursiveLS(endog, exog, loglikelihood_burn=3)
res = mod.fit()
llb = res.loglikelihood_burn
assert_allclose(res.resid_recursive[3:], results_stata.iloc[3:]['rr'],
atol=1e-4, rtol=1e-4)
assert_allclose(res.cusum, results_stata.iloc[3:]['cusum'], atol=1e-4)
assert_allclose(res.cusum_squares, results_stata.iloc[3:]['cusum2'],
atol=1e-4)
actual_bounds = res._cusum_significance_bounds(
alpha=0.05, ddof=0, points=np.arange(llb+1, res.nobs+1))
desired_bounds = results_stata.iloc[3:][['lw', 'uw']].T
assert_allclose(actual_bounds, desired_bounds, atol=1e-4)
# Note: Stata uses a set of tabulated critical values whereas we use an
# approximation formula, so this test is quite imprecise
actual_bounds = res._cusum_squares_significance_bounds(
alpha=0.05, points=np.arange(llb+1, res.nobs+1))
desired_bounds = results_stata.iloc[3:][['lww', 'uww']].T
assert_allclose(actual_bounds, desired_bounds, atol=1e-2)
示例3: test_filter
def test_filter():
# Basic test for filtering
mod = RecursiveLS(endog, exog)
res = mod.filter()
# Test the RLS estimates against OLS estimates
mod_ols = OLS(endog, exog)
res_ols = mod_ols.fit()
assert_allclose(res.params, res_ols.params)
示例4: test_plots
def test_plots():
if not have_matplotlib:
raise SkipTest
exog = add_constant(dta[['m1', 'pop']])
mod = RecursiveLS(endog, exog)
res = mod.fit()
# Basic plot
fig = res.plot_recursive_coefficient()
plt.close(fig)
# Specific variable
fig = res.plot_recursive_coefficient(variables=['m1'])
plt.close(fig)
# All variables
fig = res.plot_recursive_coefficient(variables=[0, 'm1', 'pop'])
plt.close(fig)
# Basic plot
fig = res.plot_cusum()
plt.close(fig)
# Other alphas
for alpha in [0.01, 0.10]:
fig = res.plot_cusum(alpha=alpha)
plt.close(fig)
# Invalid alpha
assert_raises(ValueError, res.plot_cusum, alpha=0.123)
# Basic plot
fig = res.plot_cusum_squares()
plt.close(fig)
# Numpy input (no dates)
mod = RecursiveLS(endog.values, exog.values)
res = mod.fit()
# Basic plot
fig = res.plot_recursive_coefficient()
plt.close(fig)
# Basic plot
fig = res.plot_cusum()
plt.close(fig)
# Basic plot
fig = res.plot_cusum_squares()
plt.close(fig)
示例5: test_from_formula
def test_from_formula():
mod = RecursiveLS.from_formula('cpi ~ m1', data=dta)
res = mod.fit()
# Test the RLS estimates against OLS estimates
mod_ols = OLS.from_formula('cpi ~ m1', data=dta)
res_ols = mod_ols.fit()
assert_allclose(res.params, res_ols.params)
示例6: test_cusum
def test_cusum():
mod = RecursiveLS(endog, exog)
res = mod.fit()
# Test the cusum statistics against those from R (strucchange)
# These values are not even close to ours, to Statas, or to the alternate
# statsmodels values
# assert_allclose(res.cusum, results_R['cusum'])
# Test the cusum statistics against Stata (cusum6)
# Note: cusum6 excludes the first 3 elements due to OLS initialization
# whereas we exclude only the first 2. Also there are initialization
# differences (as seen above in the recursive residuals).
# Here we explicitly reverse engineer our cusum to match their to show the
# equivalence
d = res.nobs_diffuse
cusum = res.cusum * np.std(res.resid_recursive[d:], ddof=1)
cusum -= res.resid_recursive[d]
cusum /= np.std(res.resid_recursive[d+1:], ddof=1)
cusum = cusum[1:]
assert_allclose(cusum, results_stata.iloc[3:]['cusum'], atol=1e-6, rtol=1e-5)
# Test the cusum statistics against statsmodels estimates
mod_ols = OLS(endog, exog)
res_ols = mod_ols.fit()
desired_cusum = recursive_olsresiduals(res_ols)[-2][1:]
assert_allclose(res.cusum, desired_cusum, rtol=1e-6)
# Test the cusum bounds against Stata (cusum6)
# Again note that cusum6 excludes the first 3 elements, so we need to
# change the ddof and points.
actual_bounds = res._cusum_significance_bounds(
alpha=0.05, ddof=1, points=np.arange(d+1, res.nobs))
desired_bounds = results_stata.iloc[3:][['lw', 'uw']].T
assert_allclose(actual_bounds, desired_bounds, rtol=1e-6)
# Test the cusum bounds against statsmodels
actual_bounds = res._cusum_significance_bounds(
alpha=0.05, ddof=0, points=np.arange(d, res.nobs))
desired_bounds = recursive_olsresiduals(res_ols)[-1]
assert_allclose(actual_bounds, desired_bounds)
# Test for invalid calls
assert_raises(ValueError, res._cusum_squares_significance_bounds,
alpha=0.123)
示例7: test_endog
def test_endog():
# Tests for numpy input
mod = RecursiveLS(endog.values, exog.values)
res = mod.fit()
# Test the RLS estimates against OLS estimates
mod_ols = OLS(endog, exog)
res_ols = mod_ols.fit()
assert_allclose(res.params, res_ols.params)
# Tests for 1-dim exog
mod = RecursiveLS(endog, dta['m1'].values)
res = mod.fit()
# Test the RLS estimates against OLS estimates
mod_ols = OLS(endog, dta['m1'])
res_ols = mod_ols.fit()
assert_allclose(res.params, res_ols.params)
示例8: test_plots
def test_plots(close_figures):
exog = add_constant(dta[['m1', 'pop']])
mod = RecursiveLS(endog, exog)
res = mod.fit()
# Basic plot
try:
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
except ImportError:
pass
fig = res.plot_recursive_coefficient()
# Specific variable
fig = res.plot_recursive_coefficient(variables=['m1'])
# All variables
fig = res.plot_recursive_coefficient(variables=[0, 'm1', 'pop'])
# Basic plot
fig = res.plot_cusum()
# Other alphas
for alpha in [0.01, 0.10]:
fig = res.plot_cusum(alpha=alpha)
# Invalid alpha
assert_raises(ValueError, res.plot_cusum, alpha=0.123)
# Basic plot
fig = res.plot_cusum_squares()
# Numpy input (no dates)
mod = RecursiveLS(endog.values, exog.values)
res = mod.fit()
# Basic plot
fig = res.plot_recursive_coefficient()
# Basic plot
fig = res.plot_cusum()
# Basic plot
fig = res.plot_cusum_squares()
示例9: test_from_formula
def test_from_formula():
with pytest.warns(ValueWarning, match="No frequency information"):
mod = RecursiveLS.from_formula('cpi ~ m1', data=dta)
res = mod.fit()
# Test the RLS estimates against OLS estimates
mod_ols = OLS.from_formula('cpi ~ m1', data=dta)
res_ols = mod_ols.fit()
assert_allclose(res.params, res_ols.params)
示例10: test_resid_recursive
def test_resid_recursive():
mod = RecursiveLS(endog, exog)
res = mod.fit()
# Test the recursive residuals against those from R (strucchange)
assert_allclose(res.resid_recursive[2:10].T,
results_R.iloc[:8]['rec_resid'])
assert_allclose(res.resid_recursive[9:20].T,
results_R.iloc[7:18]['rec_resid'])
assert_allclose(res.resid_recursive[19:].T,
results_R.iloc[17:]['rec_resid'])
# Test the RLS estimates against those from Stata (cusum6)
assert_allclose(res.resid_recursive[3:],
results_stata.iloc[3:]['rr'], atol=1e-5, rtol=1e-5)
# Test the RLS estimates against statsmodels estimates
mod_ols = OLS(endog, exog)
res_ols = mod_ols.fit()
desired_resid_recursive = recursive_olsresiduals(res_ols)[4][2:]
assert_allclose(res.resid_recursive[2:], desired_resid_recursive)
示例11: test_estimates
def test_estimates():
mod = RecursiveLS(endog, exog)
res = mod.fit()
# Test for start_params
assert_equal(mod.start_params, 0)
# Test the RLS coefficient estimates against those from R (quantreg)
# Due to initialization issues, we get more agreement as we get
# farther from the initial values.
assert_allclose(res.recursive_coefficients.filtered[:, 2:10].T,
results_R.iloc[:8][['beta1', 'beta2']], rtol=1e-5)
assert_allclose(res.recursive_coefficients.filtered[:, 9:20].T,
results_R.iloc[7:18][['beta1', 'beta2']])
assert_allclose(res.recursive_coefficients.filtered[:, 19:].T,
results_R.iloc[17:][['beta1', 'beta2']])
# Test the RLS estimates against OLS estimates
mod_ols = OLS(endog, exog)
res_ols = mod_ols.fit()
assert_allclose(res.params, res_ols.params)
示例12: test_stata
def test_stata():
# Test the cusum and cusumsq statistics against Stata (cusum6)
mod = RecursiveLS(endog, exog, loglikelihood_burn=3)
res = mod.fit()
d = max(res.nobs_diffuse, res.loglikelihood_burn)
assert_allclose(res.resid_recursive[3:], results_stata.iloc[3:]['rr'],
atol=1e-5, rtol=1e-5)
assert_allclose(res.cusum, results_stata.iloc[3:]['cusum'], atol=1e-5)
assert_allclose(res.cusum_squares, results_stata.iloc[3:]['cusum2'],
atol=1e-5)
actual_bounds = res._cusum_significance_bounds(
alpha=0.05, ddof=0, points=np.arange(d+1, res.nobs+1))
desired_bounds = results_stata.iloc[3:][['lw', 'uw']].T
assert_allclose(actual_bounds, desired_bounds, atol=1e-5)
# Note: Stata uses a set of tabulated critical values whereas we use an
# approximation formula, so this test is quite imprecise
actual_bounds = res._cusum_squares_significance_bounds(
alpha=0.05, points=np.arange(d+1, res.nobs+1))
desired_bounds = results_stata.iloc[3:][['lww', 'uww']].T
assert_allclose(actual_bounds, desired_bounds, atol=1e-2)
示例13: test_resid_recursive
def test_resid_recursive():
mod = RecursiveLS(endog, exog)
res = mod.fit()
# Test the recursive residuals against those from R (strucchange)
# Due to initialization issues, we get more agreement as we get
# farther from the initial values.
assert_allclose(res.resid_recursive[2:10].T,
results_R.iloc[:8]['rec_resid'], atol=1e-2, rtol=1e-3)
assert_allclose(res.resid_recursive[9:20].T,
results_R.iloc[7:18]['rec_resid'], atol=1e-3, rtol=1e-4)
assert_allclose(res.resid_recursive[19:].T,
results_R.iloc[17:]['rec_resid'], atol=1e-4, rtol=1e-4)
# Test the RLS estimates against those from Stata (cusum6)
assert_allclose(res.resid_recursive[3:],
results_stata.iloc[3:]['rr'], atol=1e-3)
# Test the RLS estimates against statsmodels estimates
mod_ols = OLS(endog, exog)
res_ols = mod_ols.fit()
desired_resid_recursive = recursive_olsresiduals(res_ols)[4][2:]
assert_allclose(res.resid_recursive[2:], desired_resid_recursive,
atol=1e-4, rtol=1e-4)
示例14: test_ols
def test_ols():
# More comprehensive tests against OLS estimates
mod = RecursiveLS(endog, dta['m1'])
res = mod.fit()
mod_ols = OLS(endog, dta['m1'])
res_ols = mod_ols.fit()
# Regression coefficients, standard errors, and estimated scale
assert_allclose(res.params, res_ols.params)
assert_allclose(res.bse, res_ols.bse)
# Note: scale here is computed according to Harvey, 1989, 4.2.5, and is
# the called the ML estimator and sometimes (e.g. later in section 5)
# denoted \tilde \sigma_*^2
assert_allclose(res.filter_results.obs_cov[0, 0], res_ols.scale)
# OLS residuals are equivalent to smoothed forecast errors
# (the latter are defined as e_t|T by Harvey, 1989, 5.4.5)
# (this follows since the smoothed state simply contains the
# full-information estimates of the regression coefficients)
actual = (mod.endog[:, 0] -
np.sum(mod['design', 0, :, :] * res.smoothed_state, axis=0))
assert_allclose(actual, res_ols.resid)
# Given the estimate of scale as `sum(v_t^2 / f_t) / (T - d)` (see
# Harvey, 1989, 4.2.5 on p. 183), then llf_recursive is equivalent to the
# full OLS loglikelihood (i.e. without the scale concentrated out).
desired = mod_ols.loglike(res_ols.params, scale=res_ols.scale)
assert_allclose(res.llf_recursive, desired)
# Alternatively, we can constrcut the concentrated OLS loglikelihood
# by computing the scale term with `nobs` in the denominator rather than
# `nobs - d`.
scale_alternative = np.sum((
res.standardized_forecasts_error[0, 1:] *
res.filter_results.obs_cov[0, 0]**0.5)**2) / mod.nobs
llf_alternative = np.log(norm.pdf(res.resid_recursive, loc=0,
scale=scale_alternative**0.5)).sum()
assert_allclose(llf_alternative, res_ols.llf)
# Prediction
actual = res.forecast(10, design=np.ones((1, 1, 10)))
assert_allclose(actual, res_ols.predict(np.ones((10, 1))))
# Sums of squares, R^2
assert_allclose(res.ess, res_ols.ess)
assert_allclose(res.ssr, res_ols.ssr)
assert_allclose(res.centered_tss, res_ols.centered_tss)
assert_allclose(res.uncentered_tss, res_ols.uncentered_tss)
assert_allclose(res.rsquared, res_ols.rsquared)
# Mean squares
assert_allclose(res.mse_model, res_ols.mse_model)
assert_allclose(res.mse_resid, res_ols.mse_resid)
assert_allclose(res.mse_total, res_ols.mse_total)
# Hypothesis tests
actual = res.t_test('m1 = 0')
desired = res_ols.t_test('m1 = 0')
assert_allclose(actual.statistic, desired.statistic)
assert_allclose(actual.pvalue, desired.pvalue, atol=1e-15)
actual = res.f_test('m1 = 0')
desired = res_ols.f_test('m1 = 0')
assert_allclose(actual.statistic, desired.statistic)
assert_allclose(actual.pvalue, desired.pvalue, atol=1e-15)
# Information criteria
# Note: the llf and llf_obs given in the results are based on the Kalman
# filter and so the ic given in results will not be identical to the
# OLS versions. Additionally, llf_recursive is comparable to the
# non-concentrated llf, and not the concentrated llf that is by default
# used in OLS. Compute new ic based on llf_alternative to compare.
actual_aic = aic(llf_alternative, res.nobs_effective, res.df_model)
assert_allclose(actual_aic, res_ols.aic)
actual_bic = bic(llf_alternative, res.nobs_effective, res.df_model)
assert_allclose(actual_bic, res_ols.bic)
示例15: test_glm
def test_glm(constraints=None):
# More comprehensive tests against GLM estimates (this is sort of redundant
# given `test_ols`, but this is mostly to complement the tests in
# `test_glm_constrained`)
endog = dta.infl
exog = add_constant(dta[['unemp', 'm1']])
mod = RecursiveLS(endog, exog, constraints=constraints)
res = mod.fit()
mod_glm = GLM(endog, exog)
if constraints is None:
res_glm = mod_glm.fit()
else:
res_glm = mod_glm.fit_constrained(constraints=constraints)
# Regression coefficients, standard errors, and estimated scale
assert_allclose(res.params, res_glm.params)
assert_allclose(res.bse, res_glm.bse, atol=1e-6)
# Note: scale here is computed according to Harvey, 1989, 4.2.5, and is
# the called the ML estimator and sometimes (e.g. later in section 5)
# denoted \tilde \sigma_*^2
assert_allclose(res.filter_results.obs_cov[0, 0], res_glm.scale)
# DoF
# Note: GLM does not include intercept in DoF, so modify by -1
assert_equal(res.df_model - 1, res_glm.df_model)
# OLS residuals are equivalent to smoothed forecast errors
# (the latter are defined as e_t|T by Harvey, 1989, 5.4.5)
# (this follows since the smoothed state simply contains the
# full-information estimates of the regression coefficients)
actual = (mod.endog[:, 0] -
np.sum(mod['design', 0, :, :] * res.smoothed_state, axis=0))
assert_allclose(actual, res_glm.resid_response, atol=1e-7)
# Given the estimate of scale as `sum(v_t^2 / f_t) / (T - d)` (see
# Harvey, 1989, 4.2.5 on p. 183), then llf_recursive is equivalent to the
# full OLS loglikelihood (i.e. without the scale concentrated out).
desired = mod_glm.loglike(res_glm.params, scale=res_glm.scale)
assert_allclose(res.llf_recursive, desired)
# Alternatively, we can construct the concentrated OLS loglikelihood
# by computing the scale term with `nobs` in the denominator rather than
# `nobs - d`.
scale_alternative = np.sum((
res.standardized_forecasts_error[0, 1:] *
res.filter_results.obs_cov[0, 0]**0.5)**2) / mod.nobs
llf_alternative = np.log(norm.pdf(res.resid_recursive, loc=0,
scale=scale_alternative**0.5)).sum()
assert_allclose(llf_alternative, res_glm.llf)
# Prediction
# TODO: prediction in this case is not working.
if constraints is None:
design = np.ones((1, 3, 10))
actual = res.forecast(10, design=design)
assert_allclose(actual, res_glm.predict(np.ones((10, 3))))
else:
design = np.ones((2, 3, 10))
assert_raises(NotImplementedError, res.forecast, 10, design=design)
# Hypothesis tests
actual = res.t_test('m1 = 0')
desired = res_glm.t_test('m1 = 0')
assert_allclose(actual.statistic, desired.statistic)
assert_allclose(actual.pvalue, desired.pvalue, atol=1e-15)
actual = res.f_test('m1 = 0')
desired = res_glm.f_test('m1 = 0')
assert_allclose(actual.statistic, desired.statistic)
assert_allclose(actual.pvalue, desired.pvalue)
# Information criteria
# Note: the llf and llf_obs given in the results are based on the Kalman
# filter and so the ic given in results will not be identical to the
# OLS versions. Additionally, llf_recursive is comparable to the
# non-concentrated llf, and not the concentrated llf that is by default
# used in OLS. Compute new ic based on llf_alternative to compare.
actual_aic = aic(llf_alternative, res.nobs_effective, res.df_model)
assert_allclose(actual_aic, res_glm.aic)