本文整理匯總了Python中spacy.tokens.Doc類的典型用法代碼示例。如果您正苦於以下問題:Python Doc類的具體用法?Python Doc怎麽用?Python Doc使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了Doc類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_doc_array_to_from_string_attrs
def test_doc_array_to_from_string_attrs(en_vocab, attrs):
"""Test that both Doc.to_array and Doc.from_array accept string attrs,
as well as single attrs and sequences of attrs.
"""
words = ["An", "example", "sentence"]
doc = Doc(en_vocab, words=words)
Doc(en_vocab, words=words).from_array(attrs, doc.to_array(attrs))
示例2: __init__
def __init__(self, nlp, label='GPE'):
"""Initialise the pipeline component. The shared nlp instance is used
to initialise the matcher with the shared vocab, get the label ID and
generate Doc objects as phrase match patterns.
"""
# Make request once on initialisation and store the data
r = requests.get('https://restcountries.eu/rest/v2/all')
r.raise_for_status() # make sure requests raises an error if it fails
countries = r.json()
# Convert API response to dict keyed by country name for easy lookup
# This could also be extended using the alternative and foreign language
# names provided by the API
self.countries = {c['name']: c for c in countries}
self.label = nlp.vocab.strings[label] # get entity label ID
# Set up the PhraseMatcher with Doc patterns for each country name
patterns = [nlp(c) for c in self.countries.keys()]
self.matcher = PhraseMatcher(nlp.vocab)
self.matcher.add('COUNTRIES', None, *patterns)
# Register attribute on the Token. We'll be overwriting this based on
# the matches, so we're only setting a default value, not a getter.
# If no default value is set, it defaults to None.
Token.set_extension('is_country', default=False)
Token.set_extension('country_capital')
Token.set_extension('country_latlng')
Token.set_extension('country_flag')
# Register attributes on Doc and Span via a getter that checks if one of
# the contained tokens is set to is_country == True.
Doc.set_extension('has_country', getter=self.has_country)
Span.set_extension('has_country', getter=self.has_country)
示例3: get_doc
def get_doc(vocab, words=[], pos=None, heads=None, deps=None, tags=None, ents=None):
"""Create Doc object from given vocab, words and annotations."""
pos = pos or [""] * len(words)
tags = tags or [""] * len(words)
heads = heads or [0] * len(words)
deps = deps or [""] * len(words)
for value in deps + tags + pos:
vocab.strings.add(value)
doc = Doc(vocab, words=words)
attrs = doc.to_array([POS, HEAD, DEP])
for i, (p, head, dep) in enumerate(zip(pos, heads, deps)):
attrs[i, 0] = doc.vocab.strings[p]
attrs[i, 1] = head
attrs[i, 2] = doc.vocab.strings[dep]
doc.from_array([POS, HEAD, DEP], attrs)
if ents:
doc.ents = [
Span(doc, start, end, label=doc.vocab.strings[label])
for start, end, label in ents
]
if tags:
for token in doc:
token.tag_ = tags[token.i]
return doc
示例4: test_doc_array_attr_of_token
def test_doc_array_attr_of_token(en_vocab):
doc = Doc(en_vocab, words=["An", "example", "sentence"])
example = doc.vocab["example"]
assert example.orth != example.shape
feats_array = doc.to_array((ORTH, SHAPE))
assert feats_array[0][0] != feats_array[0][1]
assert feats_array[0][0] != feats_array[0][1]
示例5: test_doc_api_similarity_match
def test_doc_api_similarity_match():
doc = Doc(Vocab(), words=["a"])
assert doc.similarity(doc[0]) == 1.0
assert doc.similarity(doc.vocab["a"]) == 1.0
doc2 = Doc(doc.vocab, words=["a", "b", "c"])
with pytest.warns(ModelsWarning):
assert doc.similarity(doc2[:1]) == 1.0
assert doc.similarity(doc2) == 0.0
示例6: test_doc_retokenize_merge_extension_attrs_invalid
def test_doc_retokenize_merge_extension_attrs_invalid(en_vocab, underscore_attrs):
Token.set_extension("a", getter=lambda x: x, force=True)
Token.set_extension("b", method=lambda x: x, force=True)
doc = Doc(en_vocab, words=["hello", "world", "!"])
attrs = {"_": underscore_attrs}
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.merge(doc[0:2], attrs=attrs)
示例7: test_issue1547
def test_issue1547():
"""Test that entity labels still match after merging tokens."""
words = ["\n", "worda", ".", "\n", "wordb", "-", "Biosphere", "2", "-", " \n"]
doc = Doc(Vocab(), words=words)
doc.ents = [Span(doc, 6, 8, label=doc.vocab.strings["PRODUCT"])]
with doc.retokenize() as retokenizer:
retokenizer.merge(doc[5:7])
assert [ent.text for ent in doc.ents]
示例8: test_serialize_empty_doc
def test_serialize_empty_doc(en_vocab):
doc = Doc(en_vocab)
data = doc.to_bytes()
doc2 = Doc(en_vocab)
doc2.from_bytes(data)
assert len(doc) == len(doc2)
for token1, token2 in zip(doc, doc2):
assert token1.text == token2.text
示例9: test_underscore_dir
def test_underscore_dir(en_vocab):
"""Test that dir() correctly returns extension attributes. This enables
things like tab-completion for the attributes in doc._."""
Doc.set_extension("test_dir", default=None)
doc = Doc(en_vocab, words=["hello", "world"])
assert "_" in dir(doc)
assert "test_dir" in dir(doc._)
assert "test_dir" not in dir(doc[0]._)
assert "test_dir" not in dir(doc[0:2]._)
示例10: test_doc_to_json_underscore
def test_doc_to_json_underscore(doc):
Doc.set_extension("json_test1", default=False)
Doc.set_extension("json_test2", default=False)
doc._.json_test1 = "hello world"
doc._.json_test2 = [1, 2, 3]
json_doc = doc.to_json(underscore=["json_test1", "json_test2"])
assert "_" in json_doc
assert json_doc["_"]["json_test1"] == "hello world"
assert json_doc["_"]["json_test2"] == [1, 2, 3]
示例11: test_doc_retokenize_split_extension_attrs_invalid
def test_doc_retokenize_split_extension_attrs_invalid(en_vocab, underscore_attrs):
Token.set_extension("x", default=False, force=True)
Token.set_extension("a", getter=lambda x: x, force=True)
Token.set_extension("b", method=lambda x: x, force=True)
doc = Doc(en_vocab, words=["LosAngeles", "start"])
attrs = {"_": underscore_attrs}
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
heads = [(doc[0], 1), doc[1]]
retokenizer.split(doc[0], ["Los", "Angeles"], heads, attrs=attrs)
示例12: test_doc_retokenize_split_heads_error
def test_doc_retokenize_split_heads_error(en_vocab):
doc = Doc(en_vocab, words=["LosAngeles", "start", "."])
# Not enough heads
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [doc[1]])
# Too many heads
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["Los", "Angeles"], [doc[1], doc[1], doc[1]])
示例13: test_doc_add_entities_set_ents_iob
def test_doc_add_entities_set_ents_iob(en_vocab):
doc = Doc(en_vocab, words=["This", "is", "a", "lion"])
ner = EntityRecognizer(en_vocab)
ner.begin_training([])
ner(doc)
assert len(list(doc.ents)) == 0
assert [w.ent_iob_ for w in doc] == (["O"] * len(doc))
doc.ents = [(doc.vocab.strings["ANIMAL"], 3, 4)]
assert [w.ent_iob_ for w in doc] == ["", "", "", "B"]
doc.ents = [(doc.vocab.strings["WORD"], 0, 2)]
assert [w.ent_iob_ for w in doc] == ["B", "I", "", ""]
示例14: test_doc_retokenize_split_orths_mismatch
def test_doc_retokenize_split_orths_mismatch(en_vocab):
"""Test that the regular retokenizer.split raises an error if the orths
don't match the original token text. There might still be a method that
allows this, but for the default use cases, merging and splitting should
always conform with spaCy's non-destructive tokenization policy. Otherwise,
it can lead to very confusing and unexpected results.
"""
doc = Doc(en_vocab, words=["LosAngeles", "start", "."])
with pytest.raises(ValueError):
with doc.retokenize() as retokenizer:
retokenizer.split(doc[0], ["L", "A"], [(doc[0], 0), (doc[0], 0)])
示例15: test_spans_override_sentiment
def test_spans_override_sentiment(en_tokenizer):
"""Test span.sentiment property's default averaging behaviour"""
text = "good stuff bad stuff"
tokens = en_tokenizer(text)
tokens.vocab[tokens[0].text].sentiment = 3.0
tokens.vocab[tokens[2].text].sentiment = -2.0
doc = Doc(tokens.vocab, words=[t.text for t in tokens])
doc.user_span_hooks["sentiment"] = lambda span: 10.0
assert doc[:2].sentiment == 10.0
assert doc[-2:].sentiment == 10.0
assert doc[:-1].sentiment == 10.0