本文整理匯總了Python中smqtk.representation.descriptor_element.local_elements.DescriptorMemoryElement.vector方法的典型用法代碼示例。如果您正苦於以下問題:Python DescriptorMemoryElement.vector方法的具體用法?Python DescriptorMemoryElement.vector怎麽用?Python DescriptorMemoryElement.vector使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類smqtk.representation.descriptor_element.local_elements.DescriptorMemoryElement
的用法示例。
在下文中一共展示了DescriptorMemoryElement.vector方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_none_set
# 需要導入模塊: from smqtk.representation.descriptor_element.local_elements import DescriptorMemoryElement [as 別名]
# 或者: from smqtk.representation.descriptor_element.local_elements.DescriptorMemoryElement import vector [as 別名]
def test_none_set(self):
d = DescriptorMemoryElement('test', 0)
ntools.assert_false(d.has_vector())
d.set_vector(numpy.ones(16))
ntools.assert_true(d.has_vector())
numpy.testing.assert_equal(d.vector(), numpy.ones(16))
d.set_vector(None)
ntools.assert_false(d.has_vector())
ntools.assert_is(d.vector(), None)
示例2: test_none_set
# 需要導入模塊: from smqtk.representation.descriptor_element.local_elements import DescriptorMemoryElement [as 別名]
# 或者: from smqtk.representation.descriptor_element.local_elements.DescriptorMemoryElement import vector [as 別名]
def test_none_set(self):
d = DescriptorMemoryElement('test', 0)
self.assertFalse(d.has_vector())
d.set_vector(numpy.ones(16))
self.assertTrue(d.has_vector())
numpy.testing.assert_equal(d.vector(), numpy.ones(16))
d.set_vector(None)
self.assertFalse(d.has_vector())
self.assertIs(d.vector(), None)
示例3: test_output_immutability
# 需要導入模塊: from smqtk.representation.descriptor_element.local_elements import DescriptorMemoryElement [as 別名]
# 或者: from smqtk.representation.descriptor_element.local_elements.DescriptorMemoryElement import vector [as 別名]
def test_output_immutability(self):
# make sure that data stored is not susceptible to modifications after
# extraction
v = numpy.ones(16)
d = DescriptorMemoryElement('test', 0)
ntools.assert_false(d.has_vector())
d.set_vector(v)
r = d.vector()
r[:] = 0
ntools.assert_equal(r.sum(), 0)
ntools.assert_equal(d.vector().sum(), 16)
示例4: _random_euclidean
# 需要導入模塊: from smqtk.representation.descriptor_element.local_elements import DescriptorMemoryElement [as 別名]
# 或者: from smqtk.representation.descriptor_element.local_elements.DescriptorMemoryElement import vector [as 別名]
def _random_euclidean(self, hash_ftor, hash_idx,
ftor_train_hook=lambda d: None):
# :param hash_ftor: Hash function class for generating hash codes for
# descriptors.
# :param hash_idx: Hash index instance to use in local LSH algo
# instance.
# :param ftor_train_hook: Function for training functor if necessary.
# make random descriptors
i = 1000
dim = 256
td = []
np.random.seed(self.RANDOM_SEED)
for j in range(i):
d = DescriptorMemoryElement('random', j)
d.set_vector(np.random.rand(dim))
td.append(d)
ftor_train_hook(td)
di = MemoryDescriptorIndex()
kvstore = MemoryKeyValueStore()
index = LSHNearestNeighborIndex(hash_ftor, di, kvstore,
hash_index=hash_idx,
distance_method='euclidean')
index.build_index(td)
# test query from build set -- should return same descriptor when k=1
q = td[255]
r, dists = index.nn(q, 1)
self.assertEqual(r[0], q)
# test query very near a build vector
td_q = td[0]
q = DescriptorMemoryElement('query', i)
v = td_q.vector().copy()
v_min = max(v.min(), 0.1)
v[0] += v_min
v[dim-1] -= v_min
q.set_vector(v)
r, dists = index.nn(q, 1)
self.assertFalse(np.array_equal(q.vector(), td_q.vector()))
self.assertEqual(r[0], td_q)
# random query
q = DescriptorMemoryElement('query', i+1)
q.set_vector(np.random.rand(dim))
# for any query of size k, results should at least be in distance order
r, dists = index.nn(q, 10)
for j in range(1, len(dists)):
self.assertGreater(dists[j], dists[j-1])
r, dists = index.nn(q, i)
for j in range(1, len(dists)):
self.assertGreater(dists[j], dists[j-1])
示例5: test_input_immutability
# 需要導入模塊: from smqtk.representation.descriptor_element.local_elements import DescriptorMemoryElement [as 別名]
# 或者: from smqtk.representation.descriptor_element.local_elements.DescriptorMemoryElement import vector [as 別名]
def test_input_immutability(self):
# make sure that data stored is not susceptible to shifts in the
# originating data matrix they were pulled from.
#
# Testing this with a single vector
#
v = numpy.random.rand(16)
t = tuple(v.copy())
d = DescriptorMemoryElement('test', 0)
d.set_vector(v)
v[:] = 0
ntools.assert_true((v == 0).all())
ntools.assert_false(sum(t) == 0.)
numpy.testing.assert_equal(d.vector(), t)
#
# Testing with matrix
#
m = numpy.random.rand(20, 16)
v1 = m[3]
v2 = m[15]
v3 = m[19]
# Save truth values of arrays as immutable tuples (copies)
t1 = tuple(v1.copy())
t2 = tuple(v2.copy())
t3 = tuple(v3.copy())
d1 = DescriptorMemoryElement('test', 1)
d1.set_vector(v1)
d2 = DescriptorMemoryElement('test', 2)
d2.set_vector(v2)
d3 = DescriptorMemoryElement('test', 3)
d3.set_vector(v3)
numpy.testing.assert_equal(v1, d1.vector())
numpy.testing.assert_equal(v2, d2.vector())
numpy.testing.assert_equal(v3, d3.vector())
# Changing the source should not change stored vectors
m[:, :] = 0.
ntools.assert_true((v1 == 0).all())
ntools.assert_true((v2 == 0).all())
ntools.assert_true((v3 == 0).all())
ntools.assert_false(sum(t1) == 0.)
ntools.assert_false(sum(t2) == 0.)
ntools.assert_false(sum(t3) == 0.)
numpy.testing.assert_equal(d1.vector(), t1)
numpy.testing.assert_equal(d2.vector(), t2)
numpy.testing.assert_equal(d3.vector(), t3)
示例6: test_set_state_version_1
# 需要導入模塊: from smqtk.representation.descriptor_element.local_elements import DescriptorMemoryElement [as 別名]
# 或者: from smqtk.representation.descriptor_element.local_elements.DescriptorMemoryElement import vector [as 別名]
def test_set_state_version_1(self):
# Test support of older state version
expected_type = 'test-type'
expected_uid = 'test-uid'
expected_v = numpy.array([1, 2, 3])
expected_v_b = BytesIO()
# noinspection PyTypeChecker
numpy.save(expected_v_b, expected_v)
expected_v_dump = expected_v_b.getvalue()
e = DescriptorMemoryElement(None, None)
e.__setstate__((expected_type, expected_uid, expected_v_dump))
self.assertEqual(e.type(), expected_type)
self.assertEqual(e.uuid(), expected_uid)
numpy.testing.assert_array_equal(e.vector(), expected_v)
示例7: _random_euclidean
# 需要導入模塊: from smqtk.representation.descriptor_element.local_elements import DescriptorMemoryElement [as 別名]
# 或者: from smqtk.representation.descriptor_element.local_elements.DescriptorMemoryElement import vector [as 別名]
def _random_euclidean(self, hash_ftor, hash_idx, ftor_train_hook=lambda d: None):
# make random descriptors
i = 1000
dim = 256
td = []
numpy.random.seed(self.RANDOM_SEED)
for j in xrange(i):
d = DescriptorMemoryElement("random", j)
d.set_vector(numpy.random.rand(dim))
td.append(d)
ftor_train_hook(td)
di = MemoryDescriptorIndex()
index = LSHNearestNeighborIndex(hash_ftor, di, hash_idx, distance_method="euclidean")
index.build_index(td)
# test query from build set -- should return same descriptor when k=1
q = td[255]
r, dists = index.nn(q, 1)
ntools.assert_equal(r[0], q)
# test query very near a build vector
td_q = td[0]
q = DescriptorMemoryElement("query", i)
v = td_q.vector().copy()
v_min = max(v.min(), 0.1)
v[0] += v_min
v[dim - 1] -= v_min
q.set_vector(v)
r, dists = index.nn(q, 1)
ntools.assert_false(numpy.array_equal(q.vector(), td_q.vector()))
ntools.assert_equal(r[0], td_q)
# random query
q = DescriptorMemoryElement("query", i + 1)
q.set_vector(numpy.random.rand(dim))
# for any query of size k, results should at least be in distance order
r, dists = index.nn(q, 10)
for j in xrange(1, len(dists)):
ntools.assert_greater(dists[j], dists[j - 1])
r, dists = index.nn(q, i)
for j in xrange(1, len(dists)):
ntools.assert_greater(dists[j], dists[j - 1])
DescriptorMemoryElement.MEMORY_CACHE = {}
示例8: test_random_descriptors_euclidean
# 需要導入模塊: from smqtk.representation.descriptor_element.local_elements import DescriptorMemoryElement [as 別名]
# 或者: from smqtk.representation.descriptor_element.local_elements.DescriptorMemoryElement import vector [as 別名]
def test_random_descriptors_euclidean(self):
# make random descriptors
i = 1000
dim = 256
bits = 32
td = []
for j in xrange(i):
d = DescriptorMemoryElement('random', j)
d.set_vector(numpy.random.rand(dim))
td.append(d)
index = self._make_inst('euclidean', bits)
index.build_index(td)
# test query from build set -- should return same descriptor when k=1
q = td[255]
r, dists = index.nn(q, 1)
ntools.assert_equal(r[0], q)
# test query very near a build vector
td_q = td[0]
q = DescriptorMemoryElement('query', i)
v = numpy.array(td_q.vector()) # copy
v_min = max(v.min(), 0.1)
v[0] += v_min
v[dim-1] -= v_min
q.set_vector(v)
r, dists = index.nn(q, 1)
ntools.assert_false(numpy.array_equal(q.vector(), td_q.vector()))
ntools.assert_equal(r[0], td_q)
# random query
q = DescriptorMemoryElement('query', i+1)
q.set_vector(numpy.random.rand(dim))
# for any query of size k, results should at least be in distance order
r, dists = index.nn(q, 10)
for j in xrange(1, len(dists)):
ntools.assert_greater(dists[j], dists[j-1])
r, dists = index.nn(q, i)
for j in xrange(1, len(dists)):
ntools.assert_greater(dists[j], dists[j-1])
示例9: test_known_descriptors_euclidean_ordered
# 需要導入模塊: from smqtk.representation.descriptor_element.local_elements import DescriptorMemoryElement [as 別名]
# 或者: from smqtk.representation.descriptor_element.local_elements.DescriptorMemoryElement import vector [as 別名]
def test_known_descriptors_euclidean_ordered(self):
index = self._make_inst('euclidean')
# make vectors to return in a known euclidean distance order
i = 10
test_descriptors = []
for j in xrange(i):
d = DescriptorMemoryElement('ordered', j)
d.set_vector(numpy.array([j, j*2], float))
test_descriptors.append(d)
random.shuffle(test_descriptors)
index.build_index(test_descriptors)
# Since descriptors were build in increasing distance from (0,0),
# returned descriptors for a query of [0,0] should be in index order.
q = DescriptorMemoryElement('query', 99)
q.set_vector(numpy.array([0, 0], float))
r, dists = index.nn(q, i)
for j, d, dist in zip(range(i), r, dists):
ntools.assert_equal(d.uuid(), j)
numpy.testing.assert_equal(d.vector(), [j, j*2])