當前位置: 首頁>>代碼示例>>Python>>正文


Python OneClassSVM.predict方法代碼示例

本文整理匯總了Python中sklearn.svm.OneClassSVM.predict方法的典型用法代碼示例。如果您正苦於以下問題:Python OneClassSVM.predict方法的具體用法?Python OneClassSVM.predict怎麽用?Python OneClassSVM.predict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.svm.OneClassSVM的用法示例。


在下文中一共展示了OneClassSVM.predict方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: svm_model

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
class svm_model():
    def train(self, X, ker):
        self.model = OneClassSVM(kernel=ker, shrinking=True,random_state=1)
        self.model.fit(X)

    def predict(self, X):
        return self.model.predict(X)
開發者ID:WEIJUNQIU,項目名稱:SemanticParse,代碼行數:9,代碼來源:oneclass_svm.py

示例2: main

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
def main():
	n = 1000
	data = []
	for i in range(n):
		data.append(np.array([np.random.randint(0, 5000) for i in range(np.random.randint(20, 150))]))
	data = np.array(data)

	# making all the data into 5 dimensions
	# howto : boxplot
	x = []
	y = []
	for i in data:
		sorted_i = sorted(i)
		x.append([max(sorted_i), np.percentile(sorted_i, 75), np.median(sorted_i), np.percentile(sorted_i, 25), min(sorted_i)])
		y.append(0)
	x = np.array(x)

	'''
	# making all the data into 5 dimensions
	# howto : distance
	start = time.time()
	data_i = 0
	cnt = 1
	x = np.zeros((n, n))
	for i in data:
		data_j = data_i
		for j in data[cnt:]:
			dist = dtw(i, j, dist=lambda i, j: norm(i - j, ord=1))[0]
			x[data_i][data_j+1], x[data_j+1][data_i] = dist, dist
			data_j += 1
		cnt += 1
		data_i += 1
	end = time.time()
	print(end - start)
	'''

	# build model with x
	model = OneClassSVM()
	model.fit(x)

	# create test dataset
	test = []
	for i in range(10):
		test.append(np.array([np.random.randint(0, 10000) for i in range(np.random.randint(20000, 30000))]))
	test = np.array(test)

	# transform test dataset
	x = []
	y = []
	for i in test:
		sorted_i = sorted(i)
		x.append([max(sorted_i), np.percentile(sorted_i, 75), np.median(sorted_i), np.percentile(sorted_i, 25), min(sorted_i)])
		y.append(0)
	x = np.array(x)

	# predict test dataset
	pred = model.predict(x)

	'''
開發者ID:maybe-jkfirst,項目名稱:Data-Mining,代碼行數:61,代碼來源:dc161012.py

示例3: Cluster

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
class Cluster(object):

    def __init__(self, name):
        self.name = name
        self.raw_dataset = []
        self.dataset = []
        self.dataset_red = []
    
    def get_featurevec(self, data):
            '''Takes in data in the form of an array of EmoPackets, and outputs
                a list of feature vectors.'''
            # CHECKED, all good :) 
            num_bins = (len(data)/int(dsp.SAMPLE_RATE*dsp.STAGGER) -
                        int(dsp.BIN_SIZE / dsp.STAGGER) + 1)
            size = int(dsp.BIN_SIZE*dsp.SAMPLE_RATE)
            starts = int(dsp.SAMPLE_RATE*dsp.STAGGER)
            points = []
            for i in range(num_bins):
                points.append(dsp.get_features(data[i*starts:i*starts+size]))
            return points

    def add_data(self, raw):
        '''Allows the addition of new data. Will retrain upon addition.
            Expects a list of EmoPackets.'''
        self.dataset.extend(self.get_featurevec(raw))

    def extract_features(self):
        '''Does feature extraction for all of the datasets.'''
        self.dataset = []
        for sess in self.raw_dataset:
            self.dataset.extend(self.get_featurevec(sess))

    def reduce_dim(self, NDIM=5):
        '''Reduces the dimension of the extracted feature vectors.'''
        X = np.array(self.dataset)
        self.pca = RandomizedPCA(n_components=NDIM).fit(X)
        self.dataset_red = self.pca.transform(X)
        
    def train(self):
        '''Trains the classifier.'''
        self.svm = OneClassSVM()
        self.svm.fit(self.dataset_red)

    def is_novel(self, pt):
        '''Says whether or not the bin is novel. Expects an array of EmoPackets'''
        X = self.pca.transform(np.array(self.get_featurevec(data)[0]))
        ans = self.svm.predict(X)
        self.dataset_red.append(X)
        self.train()
        return ans
                    
    def save(self):
        '''Saves this classifier to a data directory.'''
        this_dir, this_filename = os.path.split(__file__)
        DATA_PATH = os.path.join(this_dir, "data", self.name+'.pkl')
        dumpfile = open(DATA_PATH, "wb")
        pickle.dump(self, dumpfile, pickle.HIGHEST_PROTOCOL)
        dumpfile.close()
開發者ID:cmcneil,項目名稱:openepoc,代碼行數:60,代碼來源:learn.py

示例4: select_best_support_vectors

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
def select_best_support_vectors(data, nu=0.01, all_gammas=2 ** np.arange(-10, 10, 1)):
    all_errors = []
    for gamma in all_gammas:
        clf = OneClassSVM(nu=nu, gamma=gamma)
        clf.fit(data)
        prediction = clf.predict(data)
        out_of_class_count = np.sum(prediction == -1)
        support_vectors_count = len(clf.support_vectors_)
        error = (float(out_of_class_count) / len(data) - nu) ** 2
        error += (float(support_vectors_count) / len(data) - nu) ** 2
        all_errors.append(error)
    index = np.argmin(all_errors)
    return all_gammas[index], all_errors
開發者ID:eufig2009,項目名稱:One-Class-SVM-Kernel-Selection,代碼行數:15,代碼來源:massive_test.py

示例5: NoveltySeparator

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
class NoveltySeparator(BaseEstimator):

    def get_params(self, deep=True):
        return {}

    def fit(self, X, y):
        # lets treat users spending something in the rest of the month as outliers
        inliers = y - X[:, 0]
        inliers = np.where(inliers < 0.1, True, False)

        self.detector = OneClassSVM(nu=0.05, cache_size=2000, verbose=True)

        # training only on inliers
        print("Training detector")
        self.detector.fit(X[inliers])
        results = self.detector.predict(X).reshape(X.shape[0])
        # predicted
        inliers = results == 1
        outliers = results == -1

        print("Training estimators")
        self.est_inliers = Ridge(alpha=0.05)
        self.est_outliers = Ridge(alpha=0.05)
        self.est_inliers.fit(X[inliers], y[inliers])
        self.est_inliers.fit(X[outliers], y[outliers])

    def predict(self, X):

        y = np.zeros(X.shape[0])

        labels = self.detector.predict(X).reshape(X.shape[0])
        inliers = lables == 1
        outliers = lables == -1

        y[inliers] = self.est_inliers.predict(X[inliers])
        y[outliers] = self.est_outliers.predict(X[outliers])

        return y
開發者ID:Patechoc,項目名稱:labs-untested,代碼行數:40,代碼來源:estimators.py

示例6: slice_probability_space_selection

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
def slice_probability_space_selection(data, nu=0.05, all_gammas=2 ** np.linspace(-10, 10, 50),
    rho=0.05, outlier_distribution = np.random.rand, folds_count=7):
    kf_iterator = KFold(len(data), n_folds=folds_count)
    all_errors = []
    for gamma in all_gammas:
        error = 0.0
        clf = OneClassSVM(nu=nu, gamma=gamma)
        for train, test in kf_iterator:
            train_data = data[train,:]
            test_data = data[test,:]
            clf = OneClassSVM(nu=nu, gamma=gamma)
            clf.fit(train_data)
            prediction = clf.predict(test_data)
            inlier_metric_part = np.mean(prediction == -1)
            inlier_metric_part = inlier_metric_part / (1 + rho) / len(data)
            outliers = outlier_distribution(*data.shape) - 0.5
            outliers *= 8 * np.std(data)
            outlier_metric_part = np.mean(clf.predict(outliers) == 1) * rho / (1 + rho) / len(outliers)
            error += inlier_metric_part + outlier_metric_part
        all_errors.append(error / folds_count)
    index = np.argmin(all_errors)
    #best_index = pd.Series(all_errors).pct_change().argmax() - 1
    return int(index), all_errors
開發者ID:eufig2009,項目名稱:One-Class-SVM-Kernel-Selection,代碼行數:25,代碼來源:massive_test.py

示例7: outlier_detect

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
def outlier_detect(data_frame):
    #pandas to numpy - digestible by scikit
    columns = ['blm_tag_count','protest_count','justice_count','riot_count','breathe_count']
    features = data_frame[list(columns)].values

    clf = OneClassSVM(nu=0.008, gamma=0.05)
    clf.fit(features)
    y_pred = clf.predict(features)

    mask=[y_pred==-1]
    oak_array = np.asarray(data_frame.hourly)
    protest_predict = oak_array[mask]
    protest_hours = list(protest_predict)
    
    return protest_hours
開發者ID:CharlieDaniels,項目名稱:Rally,代碼行數:17,代碼來源:feature_eng.py

示例8: svm

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
def svm(data, fraction=0.05, kernel='poly', degree=3, gamma=0, coeff=0):
    svm = OneClassSVM(kernel=kernel, degree=degree, gamma=gamma, nu=fraction, coeff0=coeff)
    svm.fit(data)

    score = svm.predict(data)
    numeration = [[i] for i in xrange(1, len(data)+1, 1)]
    numeration = np.array(numeration)
    y = np.hstack((numeration, score))

    anomalies = numeration
    for num,s in y:
        if (y == 1):
            y = np.delete(anomalies, num-1, axis=0)

    return anomalies
開發者ID:bondarchukYV,項目名稱:AD,代碼行數:17,代碼來源:svm.py

示例9: select_best_outlier_fraction_cross_val

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
def select_best_outlier_fraction_cross_val(data, nu=0.05, all_gammas=2 ** np.arange(-10, 10, 50), folds_count=7):
    all_errors = []
    kf_iterator = KFold(len(data), n_folds=folds_count)
    for gamma in all_gammas:
        error = 0
        for train, test in kf_iterator:
            train_data = data[train,:]
            test_data = data[test,:]
            clf = OneClassSVM(nu=nu, gamma=gamma)
            clf.fit(train_data)
            prediction = clf.predict(test_data)
            outlier_fraction = np.mean(prediction == -1)
            error += (nu - outlier_fraction) ** 2 + (float(clf.support_vectors_.shape[0]) / len(data) - nu) ** 2
        all_errors.append(error / folds_count)
    best_index = np.argmin(error)
    return int(best_index), all_errors
開發者ID:eufig2009,項目名稱:One-Class-SVM-Kernel-Selection,代碼行數:18,代碼來源:massive_test.py

示例10: OneClassSVMDetector

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
class OneClassSVMDetector(BaseOutlier):
    @staticmethod
    def get_attributes():
        return {
            "nu":0.1,
            "kernel":['rbf','linear', 'poly', 'rbf', 'sigmoid', 'precomputed'],
            "gamma":0.1,
        }
    def __init__(self,nu=0.1,kernel='rbf',gamma=0.1):
        self.nu = nu
        self.kernel = kernel
        self.gamma = gamma
    def fit(self,data=None):
        self.data = data
        self.check_finite(data)
        if(self._is_using_pandas(data)==True):
            self.data.interpolate(inplace=True)
        # self.datareshap = data.reshape(-1,1)
        self.clf = OneClassSVM(nu=self.nu, kernel=self.kernel, gamma=self.gamma)
        self.clf.fit(data.reshape(-1,1))
        # print "done"
        return self
    def predict(self, X_test):
        y_pred_train = self.clf.predict(X_test.reshape(-1,1))

        outlier_idx = np.where(y_pred_train == -1)
        inlier_idx = np.where(y_pred_train == 1)
        d = {
            'timestamp': self.data.index[outlier_idx],
            'anoms': self.data.iloc[outlier_idx]
        }
        anoms = pd.DataFrame(d)
        self.anomaly_idx = anoms.index
        self.anom_val = anoms['anoms']
        return anoms
    def fit_predict(self, data=None):
        self.fit(data)
        return self.predict(data)
    def plot(self):
        import matplotlib.pyplot as plt
        f, ax = plt.subplots(1, 1)
        ax.plot(self.data, 'b')
        ax.plot(self.anomaly_idx, self.anom_val, 'ro')
        ax.set_title('Detected Anomalies')
        ax.set_ylabel('Count')
        f.tight_layout()
        return f
開發者ID:NhuanTDBK,項目名稱:CloudWatch,代碼行數:49,代碼來源:OneClassSVMDetector.py

示例11: cross_validate

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
def cross_validate():
    #for tinkering with the model
    #read data
    all_df = pd.read_csv('./data/train.csv',index_col = 'ID')

    #split data
    zeros_df = all_df[all_df.TARGET == 0]
    ones_df = all_df[all_df.TARGET == 1]
    
    num_ones = ones_df.shape[0]
    msk = np.random.permutation(len(zeros_df)) < num_ones
    
    zeros_train_df = zeros_df[~msk]
    zeros_test_df = zeros_df[msk]


    ones_test_df = ones_df
    
    train_df = zeros_train_df
    test_df = pd.concat([zeros_test_df,ones_test_df])
    
    train_X = np.array(train_df.drop('TARGET', axis = 1))
    train_Y = np.array(train_df.TARGET)
    
    test_X = np.array(test_df.drop('TARGET',axis = 1))
    test_Y = np.array(test_df.TARGET) #true target values
    
    
    #init svm 
    print('training svm')
    my_svm = OneClassSVM(verbose = True)
    my_svm.fit(train_X)
    
    
    #predict
    print('predicting')
    predictions = my_svm.predict(test_X)
    
    

    conf_matrix = confusion_matrix(test_Y,predictions)
    print('confusion matrix:')
    print(pd.DataFrame(conf_matrix,columns = [0,1]))
    
    print('accuracy:')
    print(sum(test_Y.reshape(predictions.shape) == predictions)/len(test_Y))
開發者ID:quasi-coherent,項目名稱:Kaggle-Santander,代碼行數:48,代碼來源:one_class_svm.py

示例12: predict_header_features

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
 def predict_header_features(self, pkt_featurizer):
     group_id = pkt_featurizer.pkt_type
     features = pkt_featurizer.features
     arrival_time = pkt_featurizer.arrival_time
     try:
         vectorizer = DictVectorizer()
         vectorizer.fit(self.training_data[group_id])
         training_data_vectorized = vectorizer.transform(self.training_data[group_id])
         features_vectorized = vectorizer.transform(features)
         scaler = preprocessing.StandardScaler(with_mean=False)
         training_data_vectorized = scaler.fit_transform(training_data_vectorized)
         features_vectorized = scaler.transform(features_vectorized)
         classifier = OneClassSVM()
         classifier.fit(training_data_vectorized)
         result = classifier.predict(features_vectorized)
         distance = classifier.decision_function(features_vectorized)
     except KeyError:
         result = 0
         distance = 0
     return result, distance
開發者ID:NcoderA,項目名稱:518Project,代碼行數:22,代碼來源:AnomalyDetector.py

示例13: TwoStage

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
class TwoStage(object):

    def __init__(self, *args, **kwargs):
        super(TwoStage, self).__init__(*args, **kwargs)
        self._oneCls = OneClassSVM(nu=NU, gamma=GAMMA)
        self._clf = RandomForestClassifier(n_estimators=30)
        self._scaler = StandardScaler()

    def fit(self, data, labels):
        sdata = self._scaler.fit_transform(data)
        self._oneCls.fit(sdata)
        self._clf.fit(sdata, labels)
        return self

    def predict(self, data):
        sdata = self._scaler.transform(data)
        is_known_cls = self._oneCls.predict(sdata)
        cls = self._clf.predict(sdata)
        cls[is_known_cls == -1] = "zother"        
        classes = list(self._clf.classes_) + ["zother"]
        return cls, classes
開發者ID:Hezi-Resheff,項目名稱:acc-behav-factors,代碼行數:23,代碼來源:two_stage.py

示例14: predict_pkt_length_features

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
 def predict_pkt_length_features(self, pkt_featurizer):
     group_id = pkt_featurizer.pkt_type
     try:
         dbscan = DBSCAN()
         pkt_lengths = np.array(list(self.pkt_lengths[group_id])+[pkt_featurizer.len_bytes]).reshape(-1,1)
         labels = dbscan.fit_predict(pkt_lengths)
         dbscan_prediction = labels[-1] == -1
         if self.plot:
             self.plot_1d_dbscan(pkt_lengths, labels, range(len(pkt_lengths)), self.pkt_lengths_fig_dbscan, 
                                 "", "Pkt Length", "Pkt Length DBSCAN Clustering - Anomalous Pkts in Black")
         one_class_svm = OneClassSVM()
         scaler = preprocessing.StandardScaler()
         pkt_lengths_scaled = scaler.fit_transform(np.array(self.pkt_lengths[group_id]).reshape(-1,1))
         features_scaled = scaler.transform(np.array(pkt_featurizer.len_bytes).reshape(1,-1))
         one_class_svm.fit(pkt_lengths_scaled)
         svm_prediction = one_class_svm.predict(features_scaled)
         if self.plot and len(pkt_lengths_scaled) > 2:
             self.plot_1d_svm(self.pkt_lengths[group_id], one_class_svm, range(len(self.pkt_lengths[group_id])), scaler, self.pkt_lengths_fig_svm,  
                              "Pkt", "Pkt Length", "Pkt Length One Class SVM Classification")
     except (KeyError, IndexError) as e:
         print e
         dbscan_prediction = 0
     return dbscan_prediction
開發者ID:NcoderA,項目名稱:518Project,代碼行數:25,代碼來源:AnomalyDetector.py

示例15: predict_rate_features

# 需要導入模塊: from sklearn.svm import OneClassSVM [as 別名]
# 或者: from sklearn.svm.OneClassSVM import predict [as 別名]
 def predict_rate_features(self, pkt_featurizer):
     group_id = pkt_featurizer.pkt_type
     features = pkt_featurizer.features
     arrival_time = pkt_featurizer.arrival_time
     try:
         if len(self.time_delta3[group_id]) <= 1:
             raise ValueError
         td1 = arrival_time - self.time_data[group_id][-1]
         td2 = td1 - self.time_delta1[group_id][-1]
         td3 = td2 - self.time_delta2[group_id][-1]
         """
         if self.plot:
             self.t_fig.cla()
             self.prep_figure(self.t_fig, "Time", "Pkt", grid=True)
             self.t_fig.scatter(self.time_data[group_id], range(len(self.time_data[group_id])))
             """
         dbscan1 = DBSCAN()
         dbscan2 = DBSCAN()
         dbscan3 = DBSCAN()
         td1_training = np.array(list(self.time_delta1[group_id]) + [td1]).reshape(-1,1)
         td2_training = np.array(list(self.time_delta2[group_id]) + [td2]).reshape(-1,1)
         td3_training = np.array(list(self.time_delta3[group_id]) + [td3]).reshape(-1,1)
         labels1 = dbscan1.fit_predict(td1_training)
         labels2 = dbscan2.fit_predict(td2_training)
         labels3 = dbscan3.fit_predict(td3_training)
         db_predict1 = labels1[-1] == -1
         db_predict2 = labels2[-1] == -1
         db_predict3 = labels3[-1] == -1
         if self.plot:
             self.plot_1d_dbscan(td1_training, labels1, 
                                 list(self.time_data[group_id])[(len(self.time_data[group_id])-len(self.time_delta1[group_id])) :]+[arrival_time],
                                 self.td1_fig_dbscan, "", "Pkt/Time", "Pkt Rate DBSCAN Clustering - Anomalous Pkts in Black")
             self.plot_1d_dbscan(td2_training, labels2, 
                                 list(self.time_data[group_id])[(len(self.time_data[group_id])-len(self.time_delta2[group_id])) :]+[arrival_time],
                                 self.td2_fig_dbscan, "", "Pkt/Time^2")
             self.plot_1d_dbscan(td3_training, labels3, 
                                 list(self.time_data[group_id])[(len(self.time_data[group_id])-len(self.time_delta3[group_id])) :]+[arrival_time],
                                 self.td3_fig_dbscan, "Time", "Pkt/Time^3")
     
         scaler1 = preprocessing.StandardScaler()
         scaler2 = preprocessing.StandardScaler()
         scaler3 = preprocessing.StandardScaler()
         time_training1 = scaler1.fit_transform(np.array(self.time_delta1[group_id]).reshape(-1,1))
         time_features1 = scaler1.transform(np.array(td1).reshape(1,-1))
         time_training2 = scaler2.fit_transform(np.array(self.time_delta2[group_id]).reshape(-1,1))
         time_features2 = scaler2.transform(np.array(td2).reshape(1,-1))
         time_training3 = scaler3.fit_transform(np.array(self.time_delta3[group_id]).reshape(-1,1))
         time_features3 = scaler3.transform(np.array(td3).reshape(1,-1))
         time_classifier1 = OneClassSVM().fit(time_training1)
         time_prediction1 = time_classifier1.predict(time_features1)
         time_classifier2 = OneClassSVM().fit(time_training2)
         time_prediction2 = time_classifier2.predict(time_features2)
         time_classifier3 = OneClassSVM().fit(time_training3)
         time_prediction3 = time_classifier3.predict(time_features3)                        
         if self.plot:
             self.plot_1d_svm(self.time_delta1[group_id], time_classifier1, 
                              list(self.time_data[group_id])[(len(self.time_data[group_id])-len(self.time_delta1[group_id])) :],
                              scaler1, self.td1_fig_svm, "", "Pkt/Time", "Pkt Rate One Class SVM Classification")
             self.plot_1d_svm(self.time_delta2[group_id], time_classifier2, 
                              list(self.time_data[group_id])[(len(self.time_data[group_id])-len(self.time_delta2[group_id])) :],
                              scaler2, self.td2_fig_svm, "", "Pkt/Time^2")
             self.plot_1d_svm(self.time_delta3[group_id], time_classifier3, 
                              list(self.time_data[group_id])[(len(self.time_data[group_id])-len(self.time_delta3[group_id])) :],
                              scaler3, self.td3_fig_svm, "Time", "Pkt/Time^3")
     except (KeyError, IndexError, ValueError) as e:
         print e
         db_predict1, db_predict2, db_predict3 = 0,0,0
     return db_predict1, db_predict2, db_predict3
開發者ID:NcoderA,項目名稱:518Project,代碼行數:70,代碼來源:AnomalyDetector.py


注:本文中的sklearn.svm.OneClassSVM.predict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。