當前位置: 首頁>>代碼示例>>Python>>正文


Python NuSVC.predict方法代碼示例

本文整理匯總了Python中sklearn.svm.NuSVC.predict方法的典型用法代碼示例。如果您正苦於以下問題:Python NuSVC.predict方法的具體用法?Python NuSVC.predict怎麽用?Python NuSVC.predict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.svm.NuSVC的用法示例。


在下文中一共展示了NuSVC.predict方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
class RbfSVM:
	def __init__(self):
		self.clf = NuSVC(nu=0.7, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, verbose=False, max_iter=-1)
		self.pattern ='(?u)\\b[A-Za-z]{3,}'
		self.tfidf = TfidfVectorizer(sublinear_tf=False, use_idf=True, smooth_idf=True, stop_words='english', token_pattern=self.pattern, ngram_range=(1, 3))
	def train(self,fileName):
		print "RbfSVM Classifier is being trained"
		table = pandas.read_table(fileName, sep="\t", names=["cat", "message"])
		X_train = self.tfidf.fit_transform(table.message)
		Y_train = []
		for item in table.cat:
			Y_train.append(int(item)) 
		self.clf.fit(X_train, Y_train)
		print "RbfSVM Classifier has been trained"

	def classify(self,cFileName, rFileName):
		table = pandas.read_table(cFileName, names=["message"])
		X_test = self.tfidf.transform(table.message)
		print "Data have been classified"
		with open(rFileName,'w') as f:
			for item in self.clf.predict(X_test).astype(str):
				f.write(item+'\n')

	def validate(self,fileName):
		table = pandas.read_table(fileName, sep="\t", names=["cat", "message"])
		X_validate = self.tfidf.transform(table.message)
		Y_validated = self.clf.predict(X_validate).astype(str)
		totalNum = len(table.cat)
		errorCount = 0
		for i in range(0,totalNum):
			if int(table.cat[i])!=int(Y_validated[i]):
				errorCount += 1
		print "Data have been validated! Precision={}".format((totalNum-errorCount)/float(totalNum))
開發者ID:richelite,項目名稱:classify,代碼行數:35,代碼來源:lib.py

示例2: svm

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
class svm():
    def __init__(self):
        # self.clf = SVC(kernel='rbf')
        self.clf = NuSVC()

    def train(self, inputs):
        # Parameters:
        #     inputs: An array of Input objects containing input vectors along with their corresponding labels.

        # Creates lists to use for fitting model
        X = []
        Y = []
        for data in inputs:
            X.append((data.x/np.linalg.norm(data.x)))
            Y.append(data.y)
        # Fit model
        self.clf.fit(X, Y)

    def predict(self, input):
        # Parameters:
        #     input: An Input object containing an input vector to be used for predicting a label.

        x = input.x/np.linalg.norm(input.x)
        if isinstance(input, Input):
            return self.clf.predict(x)
        else:
            x = input/np.linalg.norm(input)
            return self.clf.predict(x)
開發者ID:amagoon,項目名稱:Neural-Network-Tools,代碼行數:30,代碼來源:Backpropagator.py

示例3: predict

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
def predict(transformed_data, args, trn_label ,tst_label):
  print 'imgpred',
  sys.stdout.flush()
  
  (ndim, nsample , nsubjs) = transformed_data.shape
  accu = np.zeros(shape=nsubjs)

  tst_data = np.zeros(shape = (ndim,nsample))
  trn_data = np.zeros(shape = (ndim,(nsubjs-1)*nsample))
  # image stimulus prediction 
  for tst_subj in range(nsubjs):
    tst_data = transformed_data[:,:,tst_subj]

    trn_subj = range(nsubjs)
    trn_subj.remove(tst_subj)

    for m in range(nsubjs-1):
      trn_data[:,m*nsample:(m+1)*nsample] = transformed_data[:,:,trn_subj[m]]

    # scikit-learn svm for classification
    #clf = NuSVC(nu=0.5, kernel = 'linear')
    clf = NuSVC(nu=0.5, kernel = 'linear')
    clf.fit(trn_data.T, trn_label)

    pred_label = clf.predict(tst_data.T)
      
    accu[tst_subj] = sum(pred_label == tst_label)/float(len(pred_label))

  return accu
開發者ID:cameronphchen,項目名稱:pHA,代碼行數:31,代碼來源:imgpred.py

示例4: predict_loo

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
def predict_loo(transformed_data, args, trn_label ,tst_label):
  print 'imgpred loo',
  print args.loo,
  sys.stdout.flush()

  (ndim, nsample , nsubjs) = transformed_data.shape

  loo = args.loo
  loo_idx = range(nsubjs)
  loo_idx.remove(loo)

  #tst_data = np.zeros(shape = (ndim,nsample))
  trn_data = np.zeros(shape = (ndim,(nsubjs-1)*nsample))
  # image stimulus prediction
  # tst_data : ndim x nsample
  tst_data = transformed_data[:,:,loo]

  for m in range(len(loo_idx)):
    trn_data[:,m*nsample:(m+1)*nsample] = transformed_data[:,:,loo_idx[m]]
  
  # scikit-learn svm for classification
  clf = NuSVC(nu=0.5, kernel = 'linear')
  clf.fit(trn_data.T, trn_label)
  pred_label = clf.predict(tst_data.T)
      
  accu = sum(pred_label == tst_label)/float(len(pred_label))

  return accu
開發者ID:cameronphchen,項目名稱:pHA,代碼行數:30,代碼來源:imgpred.py

示例5: __init__

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
class Classifier:
	def __init__(self, objective_data, subjective_data):
		OBJECTIVE = 0
		SUBJECTIVE = 1

		self.objective_data = objective_data
		self.subjective_data = subjective_data

		self.text = objective_data + subjective_data

		self.labels = [OBJECTIVE for i in objective_data] + [SUBJECTIVE for i in subjective_data]

		tuple_list = zip(self.text, self.labels)

		random.shuffle(tuple_list)

		self.text = [x for x,y in tuple_list]
		self.label = [y for x,y in tuple_list]

		self.count_vectorizer = CountVectorizer(stop_words="english", min_df=3)

		# count vectorizer and specific classifier that will be used

		self.counts = self.count_vectorizer.fit_transform(self.text)
		self.classifier = None

		self.tf_transformer = TfidfTransformer(use_idf=True)
		self.frequencies = self.tf_transformer.fit_transform(self.counts)

	def multinomialNB(self):
		self.classifier = MultinomialNB(alpha=.001)
		self.classifier.fit(self.frequencies, self.labels)

	def predict(self, examples):
		example_counts = self.count_vectorizer.transform(examples)
		example_tf = self.tf_transformer.transform(example_counts)
		predictions = self.classifier.predict(example_tf)
		return predictions

	def linearSVC(self):
  		self.classifier = LinearSVC()
  		self.classifier.fit(self.frequencies, self.labels)

  	def nuSVC(self):
  		self.classifier = NuSVC()
  		self.classifier.fit(self.frequencies, self.labels)

  	def accurracy(self, text, labels):
  		prediction = self.predict(text)
  		accurracy = 0
  		for i in range(len(prediction)):
  			if prediction[i] == labels[i]:
  				accurracy += 1
  		return accurracy / float(len(prediction))

  	def f1(self, text, actual):
  		prediction = self.predict(text)
  		return f1_score(actual, prediction)
開發者ID:alokedesai,項目名稱:NLP-Final-Assignment,代碼行數:60,代碼來源:classifier.py

示例6: svc_nu

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
def svc_nu(X_train, categories,X_test, test_categories):
    from sklearn.svm import NuSVC

    svm_nu_classifier = NuSVC().fit(X_train, categories)
    y_svm_predicted = svm_nu_classifier.predict(X_test)
    print '\n Here is the classification report for support vector machine classiffier:'
    print metrics.classification_report(test_categories, y_svm_predicted)



    ''''
開發者ID:LewkowskiArkadiusz,項目名稱:magistrerka_app,代碼行數:13,代碼來源:train.py

示例7: testing

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
def testing():
    plot_x = range(1, 10)
    plot_y = []
    for i in xrange(1,10):
        vals = []
        for _ in xrange(20):
            train_data, validation_data, train_labels, validation_labels = split_data()
            clf = NuSVC(**get_kwargs(i))
            clf.fit(train_data, train_labels)
            vals.append(check_fit(clf.predict(validation_data), validation_labels))
        plot_y.append(np.mean(vals))

    plot_results(plot_x, plot_y)
開發者ID:MathYourLife,項目名稱:kaggle-scikitlearn,代碼行數:15,代碼來源:07-NuSVC-default-parameters.py

示例8: test_nusvc

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
def test_nusvc():    
    # print '==== NuSVC ===='
    # print 'Training...'
    clf = NuSVC()
    clf = clf.fit( train_data, train_labels )
    
    # print 'Predicting...'
    output = clf.predict(test_data).astype(int)
    
    predictions_file = open("CLF.csv", "wb")
    open_file_object = csv.writer(predictions_file)
    open_file_object.writerow(["PassengerId","Survived"])
    open_file_object.writerows(zip(test_id, output))
    predictions_file.close()
    # print 'Done.'
    print 'NuSVC : '
開發者ID:Raphael-De-Wang,項目名稱:Semestre02,代碼行數:18,代碼來源:SVM.py

示例9: nu_support_vector_machines

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
def nu_support_vector_machines(corpus, documents_training, documents_test, words_features, kernel, nu):
    """
    Another implementation of Support Vector Machines algorithm.
    :param corpus:
    :param documents_training:
    :param documents_test:
    :param words_features:
    :param kernel:
    :param nu:
    :return:
    """

    print
    print "----- nu-Support Vector Machines algorithm ------"
    print "Creating Training Vectors..."
    categories = util_classify.get_categories(corpus)  

    array_vector_training = []
    array_categories = []
    for (id, original_category, annotations) in documents_training:
        array_vector_training.append(util_classify.transform_document_in_vector(annotations, words_features, corpus))
        array_categories.append(util_classify.get_categories(corpus).index(original_category))    
        
    print "Training the algorithm..."
    classifier = NuSVC(nu=nu, kernel=kernel)

    X_train_features = []
    y_train_categories = []
    # Train all
    for (id, original_category, annotations) in documents_training:
        X_train_features.append(util_classify.transform_document_in_vector(annotations, words_features, corpus))
        y_train_categories.append(original_category)

    classifier.fit(np.array(X_train_features), np.array(y_train_categories))    

    print "Calculating metrics..."
    estimated_categories = []
    original_categories = []

    for (id, cat_original, annotations) in documents_test:
        cat_estimated = classifier.predict(np.array((util_classify.transform_document_in_vector(annotations, words_features, corpus))))
        estimated_categories.append(categories.index(cat_estimated))
        original_categories.append(categories.index(cat_original))

    return original_categories, estimated_categories
開發者ID:itecsde,項目名稱:classification,代碼行數:47,代碼來源:classify_methods.py

示例10: SelectKBest

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
print svc_new.score(test_x_reduced, test_y_practice)


print 'Predicting'
estimator = SelectKBest(score_func=f_classif, k=components)
estimator.fit(train_x, train_y_leaderboard)
train_x_reduced = estimator.transform(train_x)
test_x_reduced = estimator.transform(test_x)
print train_x.shape
print train_x_reduced.shape

#svc_new = SVC(probability=True, C=.000001, kernel='poly', gamma=4,
#                  degree=4)
svc_new = NuSVC(kernel='poly', probability=True, gamma=0, nu=.5852, tol=.00001)
svc_new.fit(train_x_reduced, train_y_leaderboard)
output = svc_new.predict(test_x_reduced)
"""
"""
print 'Outputting'
open_file_object = csv.writer(open(
                              "simple" + str(datetime.now().isoformat()) +
                              ".csv", "wb"))
open_file_object.writerow(['case_id', 'Target_Leaderboard'])
i = 0
for row in entries:
    open_file_object.writerow([row, output[i].astype(np.uint8)])
    i += 1

print 'Done'
print datetime.now() - start
開發者ID:rdimaggio,項目名稱:kaggle_overfitting,代碼行數:32,代碼來源:analysis_v1.py

示例11: range

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
     y_test = labels[272:,i]
 else:
     X_train = training
     y_train = labels[:172,i]
     X_test = sampletest
     y_test = labels[172:,i]
 #best case: 67, 1
 posterior = np.empty([100,72,6])
 for j in range(1,67):
     for k in range(1,2):
         box = np.zeros([6,6])
         accuracy = np.zeros(72)
         for m in range(0,10):
             nsvc = NuSVC(nu=j/100.0, degree=k)
             nsvc.fit(X_train, y_train)
             y_pred = nsvc.predict(X_test)
             
             n=0
             for i in range(0,len(y_pred)):
                 if y_pred[i] == y_test[i]:
             #print i, y_pred[i], y_test[i]
                     n = n+1
                     accuracy[i] = accuracy[i]+1
                 box[y_test[i]-1,y_pred[i]-1] = box[y_test[i]-1,y_pred[i]-1] + 1
             #posterior[m] =  knc.predict_proba(X_test)
         #print j, k, np.mean(accuracy)/0.72, np.std(accuracy)/0.72
         print j, k, sum(accuracy[0:8])/8.0, sum(accuracy[8:18])/10.0, sum(accuracy[18:30])/12.0, sum(accuracy[56:72])/16.0, sum(accuracy[30:43])/13.0, sum(accuracy[43:56])/13.0, sum(accuracy)/72.0
     '''
 means = np.empty([72,6])
 stds = np.empty([72,6])
 grid = np.empty([6,6])
開發者ID:d-giles,項目名稱:KeplerML,代碼行數:33,代碼來源:nusvc.py

示例12: LogisticRegression

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
clf_LogisticRegression = LogisticRegression(n_jobs=-1).fit(X_train, y_train)
predicted_LogisticRegression = clf_LogisticRegression.predict(X_test)
accuracy_LogisticRegression = np.mean(predicted_LogisticRegression == y_test)

clf_LogisticRegression_f = open("pickled_algos/clf_LogisticRegression.pickle", "wb")
pickle.dump(clf_LogisticRegression, clf_LogisticRegression_f)
clf_LogisticRegression_f.close()

print('LogisticRegression accuracy: %s' %accuracy_LogisticRegression)
print(metrics.classification_report(predicted_LogisticRegression, y_test))



#NuSVC Classifier
clf_NuSVC = NuSVC().fit(X_train, y_train)
predicted_NuSVC = clf_NuSVC.predict(X_test)
accuracy_NuSVC = np.mean(predicted_NuSVC == y_test)

clf_NuSVC_f = open("pickled_algos/clf_NuSVC.pickle", "wb")
pickle.dump(clf_NuSVC, clf_NuSVC_f)
clf_NuSVC_f.close()

print('NuSVC accuracy: %s' %accuracy_NuSVC)
print(metrics.classification_report(predicted_NuSVC, y_test))



#LinearSVC Classifier
clf_LinearSVC = LinearSVC().fit(X_train, y_train)
predicted_LinearSVC = clf_LinearSVC.predict(X_test)
accuracy_LinearSVC = np.mean(predicted_LinearSVC == y_test)
開發者ID:dfitzgerald3,項目名稱:sg_background,代碼行數:33,代碼來源:prepare_trn_data.py

示例13: range

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
    cm = [None] * subjects
    for subject in range(subjects):
        # Concatenate the subjects' data for training into one matrix
        train_subjects = list(range(subjects))
        train_subjects.remove(subject)
        TRs = image_data_shared[0].shape[1]
        train_data = np.zeros((image_data_shared[0].shape[0], len(train_labels)))
        for train_subject in range(len(train_subjects)):
            start_index = train_subject*TRs
            end_index = start_index+TRs
            train_data[:, start_index:end_index] = image_data_shared[train_subjects[train_subject]]
    
        # Train a Nu-SVM classifier using scikit learn
        classifier = NuSVC(nu=0.5, kernel='linear')
        classifier = classifier.fit(train_data.T, train_labels)
    
        # Predict on the test data
        predicted_labels = classifier.predict(image_data_shared[subject].T)
        accuracy[subject] = sum(predicted_labels == test_labels)/float(len(predicted_labels))
    
        # Create a confusion matrix to see the accuracy of each class
        cm[subject] = confusion_matrix(test_labels, predicted_labels)
    
        # Normalize the confusion matrix
        cm[subject] = cm[subject].astype('float') / cm[subject].sum(axis=1)[:, np.newaxis]
    
    
    # Plot and print the results
    plot_confusion_matrix(cm, title="Confusion matrices for different test subjects with Probabilistic SRM")
    print("SRM: The average accuracy among all subjects is {0:f} +/- {1:f}".format(np.mean(accuracy), np.std(accuracy)))
開發者ID:CameronTEllis,項目名稱:brainiak,代碼行數:32,代碼來源:srm_image_prediction_example_distributed.py

示例14: float

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
        train_x, test_x = x[train_index], x[test_index]
        train_y, test_y = y[train_index], y[test_index]

        gnb.fit(train_x, train_y)
        gnbrec.append( float((gnb.predict(test_x) == test_y).sum())/ len(test_y) )

        nonneg_train_x = train_x - train_x.min()
        nonneg_test_x = test_x - test_x.min()
        mnb.fit(nonneg_train_x, train_y)
        mnbrec.append( float((mnb.predict(nonneg_test_x) == test_y).sum())/ len(test_y) )

        bnb.fit(train_x, train_y)
        bnbrec.append( float((bnb.predict(test_x) == test_y).sum())/ len(test_y) )

        svm.fit(train_x, train_y)
        svmrec.append( float((svm.predict(test_x) == test_y).sum())/ len(test_y) )

        _ = PCA(n_components=20).fit(train_x)
        train_x = _.transform(train_x)
        test_x = _.transform(test_x)
        print train_x.shape
        L = lmnn.fit(train_x, train_y, verbose=True).L
        lmnnrec.append( knn(np.dot(train_x, L), train_y, np.dot(test_x, L), test_y, K=5) )

    print '\tSVM accuracy: {} = {}'.format(svmrec, np.mean(svmrec))
    print '\tLMNN accuracy: {} = {}'.format(lmnnrec, np.mean(lmnnrec))
    print '\tGaussianNB accuracy: {} = {}'.format(gnbrec, np.mean(gnbrec))
    print '\tMultinomiaNB accuracy: {} = {}'.format(mnbrec, np.mean(mnbrec))
    print '\tBernoulliNB accuracy: {} = {}'.format(bnbrec, np.mean(bnbrec))

開發者ID:PiscesDream,項目名稱:HW_Plans,代碼行數:31,代碼來源:main.py

示例15: print

# 需要導入模塊: from sklearn.svm import NuSVC [as 別名]
# 或者: from sklearn.svm.NuSVC import predict [as 別名]
# Time = 7276.782202

# Saving data
joblib.dump(clf, learning_model_path)




########### Testing ####################################

print("Making Testing Data...")
test_data = np.array(p.read_csv(filepath_or_buffer=csv_test_path, header=None, sep=',', index_col=0))[:, :]
test_label = np.ravel(np.array(p.read_csv(filepath_or_buffer=csv_test_path, header=None, sep=',', usecols=[0]))[:, :])

print("Calculating Score...")
predict = clf.predict(test_data)

from sklearn.metrics import accuracy_score
print(accuracy_score(test_label, predict))

from sklearn.metrics import classification_report
print(classification_report(test_label, predict))

from sklearn import metrics
print ( metrics.confusion_matrix(test_label, predict) )


########### Results ####################################

# SVM
開發者ID:KentaroTakemoto,項目名稱:Char74K-Learning,代碼行數:32,代碼來源:Char74K_digits.py


注:本文中的sklearn.svm.NuSVC.predict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。